https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-new-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • Microwave/RF
    • T&D World
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Omdia Crit Comms Circle Podcast
    • Galleries
    • IWCE’s Video Showcase
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
    • Sponsored content
  • IWCE
    • Back
    • Conference
    • Why Attend
    • Exhibitor Listing
    • Floor Plan
    • Exhibiting Information
    • Join the Event Mailing List
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

Coverage/Interference


Transmitter noise/receiver desense primer

Transmitter noise/receiver desense primer

When locating multiple stations at a single site, several precautions must be taken to guard against interference to all stations at the site. Among the
  • Written by Urgent Communications Administrator
  • 1st September 2000

When locating multiple stations at a single site, several precautions must be taken to guard against interference to all stations at the site. Among the factors that must be considered are transmitter noise and receiver desensitization (desense). There are tools that can be used to calculate and solve transmitter noise and receiver desense problems.

Antenna isolation

Antenna isolation is one of the first factors that must be known before dealing with transmitter noise and receiver desense (TNRD). Antenna isolation can be achieved through horizontal or vertical separation of antennas. Often, the situation allows no choice between vertical or horizontal separation. If the antennas are located on the same tower, then the isolation must be calculated for vertical separation. If the antennas are located on separate towers, then the formula for horizontal separation is usually used. The attenuation formula for free-space propagation calculates the amount of isolation provided by horizontal separation:

A 5 32.3 1 20logD 1 20logF

where D is distance in miles and F is frequency in megahertz.

Often, the antenna separation is much less than a mile, so it is easier to measure in terms of feet. When the distance is measured in feet, be sureto convert it into miles before entering it into the formula. The formula assumes that the two antennas are halfwave dipoles. If gain antennas are used, the gain figures, in decibels relative to a halfwave dipole (dBd), will reduce the amount of isolation between the antennas. See Figure 1 below.

To calculate the amount of isolation for vertically separated antennas, the following formula should be used:

where F represents frequency in megahertz, and V represents vertical antenna separation in feet. Note that the antennas should be exactly collinear (one directly in a vertical line with the other) to achieve the maximum isolation. The formula does not take into account any tower coupling that might decrease the amount of isolation between the two antennas. Separation is measured from center to center on the antennas. See Figure 2 at the right.

Often, the antennas are neither exactly vertically separated nor exactly horizontally separated, but some combination of the two. (See Figure 3 on page 20.) The isolation will be better (more like vertical) if each antenna is not in the other antenna's beamwidth. The exact isolation figure is best determined by measurement. The measurement is made as shown and described in Figure 4 on page 22.

Another way to achieve isolation is to use directional antennas (if the situation permits), thus reducing the interfering signal level.

Isolation by filtering

Often, sufficient isolation cannot be achieved by antenna separation or orientation alone. More isolation is needed. Usually, the additional isolation can be achieved through the use of RF filters – unless the frequency separation between the desired and undesired signals is too narrow. We will look at transmitter noise and receiver desense as separate issues. Usually, when one exists, the other does as well. Furthermore, if the transmitter noise problem can be solved using filters, the receiver desense problem can usually be solved with even less isolation – filters or antenna isolation.

Transmitter noise

High-density communications sites are always "hot" with RF energy. Transmitters generate a broad band of RF noise generally called sideband noise. Most of this noise is generated in the exciter section and amplified by following stages on out through the transmitter output stages. Some transmitters are worse than others in generating this broadband noise spectrum. (Some transmitters seem to be little more than a broadband noise generator.) The type of modulation also affects the noise level. (How about those digitally modulated broadband noise generators called paging transmitters? Ouch! Don't let one near your analog receiver.)

The question that must be answered before you look at filters and antenna relocation is how much does the sideband noise from the offending transmitter have to be reduced to cause minimal degradation to your receiver? A better question might be: How much additional isolation do we need, and how do we get it? It doesn't matter how much we already have if it isn't enough.

In this example, a single, specific transmitter is generating sideband noise that is seriously degrading reception at our receiver. Nothing can be done at our receiver to mitigate this problem. The cure has to be applied to the offending transmitter.

A practical test method can be used to determine how much additional isolation is necessary to reduce the offending transmitter noise level to a non-interfering or acceptable level (see Figure 5 on page 24). Here, an attenuator is placed in the transmission line preceding the receiver input. A directional coupler is placed between the attenuator and the receiver input. A signal from the signal generator is fed into the coupled port of the directional coupler. The signal generator is set to the receiver frequency and adjusted to produce 12dB sinad on the sinad meter. At first, set the attenuator to 0 attenuation. Then, when the offending transmitter comes up, increase the attenuation until the sinad meter again indicates nearly 12dB sinad. The amount of attenuation set on the attenuatoris the amount of additional isolation needed to mitigate the transmitter noise problem.

Suppose that the attenuator setting was 20dB. This means that a filter must be placed on the offending transmitter to reduce the sideband noise at the receiver frequency by 20dB. A high-pass or low-pass notch filter may solve the problem. If the filter is placed on the output of the transmitter, make sure it can handle the power output of the transmitter safely. Do not exceed the rating of the filter. In many cases, the filter can be effective when placed between the exciter and the power amplifier stages. This reduces the power-handling requirement of the filter.

Receiver desense

Receiver desense and transmitter noise generally go hand in hand – if you have one, it is likely that you will have the other. Receiver desense is caused by a strong off-frequency signal that is swamping or overloading the receiver – usually in the front end. Such a strong signal will cause the receiver to become practically non-functional. In such a condition the receiver can hardly respond to any weak signals.

Again, the question arises: How much additional isolation is needed to mitigate the problem? There is a way to determine how much additional attenuation is needed. (See Figure 6 below.) First, the input level of the offending transmitter must be measured at the receiver input. Connect a spectrum analyzer in place of the receiver, and when the offending transmitter is active, measure the level. Then, using the setup shown in Figure 6 set signal generator A to produce 12dB sinad on the sinad meter. With signal generator B set to the frequency of the offending transmitter and set for a CW signal, increase the output level of generator B until the receiver overloads and the sinad reading is degraded by a couple of decibels. Reduce the output level of generator B until the sinad meter again indicates 12dB sinad. Record the output level of generator B. It is important that signal generator B has good spectral purity, or low sideband noise. Otherwise, we might be seeing receiver degradation due to sideband noise and not due to receiver overload.

Suppose that the recorded output level of generator B was -40dBm and that the level of the offending transmitter signal was measured at -20dBm. This means that an additional isolation or attenuation of 20dB is necessary to mitigate the receiver desense problem. The cure must be applied at the receiver. A notch filter at the receiver input might do the trick. The notch would be tuned to the frequency of the offending transmitter and should have little insertion loss at the desired frequency.

Final notes

The test methods described here are for equipment already in place. If you are doing a feasibility study for a proposed installation, a different approach would be required. This approach would require knowledge of the specific transmitter's sideband noise levels and the specific receiver's desense characteristics. TNRD charts should be available from manufacturers for use in determining how much isolation would be necessary to alleviate any interference problems if it is possible at all. Sometimes, the only recourse is to relocate. This is not a desirable alternative but may be better than trying to force-fit a station into a hostile RF environment where it can never work satisfactorily. Software such as ComSite Plus from Douglas Integrated Software of Tallahassee, FL, is useful in running what-if scenarios using specific models of radio equipment and filters.

Until next time – stay tuned!

Tags: System Management content Coverage/Interference System Design System Operation Test & Measurement

Most Recent


  • Transmitter noise/receiver desense primer
    Newscan: Verizon counts 5.1 million first-responder subs; AT&T has 3.7 million
    Web Roundup Items from other news organizations Verizon counts 5.1 million first-responder subs; AT&T has 3.7 million DHS researches overcoming occlusions in video surveillance for public safety Less-serious 911 calls put on standby due to Durham EMS staffing shortages Russian hackers get the headlines. But China is the bigger threat to many U.S. enterprises. One […]
  • Motorola Solutions logo
    Motorola Solutions seeks contempt finding, global injunction against Hytera for not paying royalty
    Motorola Solutions asked a federal judge to find Hytera Communications in contempt of court for refusing to make ordered royalty payment and to prohibit the China-based manufacturer from selling land-mobile-radio (LMR) equipment globally, according to a legal filing posted Wednesday. Hytera Communications did not make its first royalty payment as scheduled on July 31 to […]
  • Humanoid robot explores shipwrecks
    Stanford University researchers created a humanoid diving robot that can access deeply-sunk vessels and objects, and features a haptic feedback system that simulates the feeling of items encountered so operators can experience what the robot does. The robot, known as OceanOneK, also comes fitted with 3D vision and eight multidirectional thrusters to help it navigate […]
  • How IT teams can use 'harm reduction' for better cybersecurity outcomes
    It’s a well-known fact that humans are — and will continue to remain — one of the weakest links in any company’s cyber defenses. Security admins have tried to help the situation through random phishing tests and training, ultimatums, eliminating local control over a given device, and even naming and shaming those unlucky souls who […]

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • Private wireless networks in the US start going public
  • IoT connectivity spending climbs as COVID-19 cases decline
  • The battle over connected cars drags on
  • UK officials revamp ESN plans again, target Airwave-to-LTE transition for end of 2026

Commentary


LTE and liability: Why the fire service must move forward with digital incident command

  • 2
6th May 2022

Partnership and collaboration must be the foundation for emergency communications

18th April 2022

FirstNet success means no hypothetical ‘shots’ need to be fired, Swenson says

22nd February 2022
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


UrgentComm

Newscan: Verizon counts 5.1 million first-responder subs; AT&T has 3.7 million dlvr.it/SW84Gv

6th August 2022
UrgentComm

Taiwan crisis another blow to the supply chain dlvr.it/SW7GSs

5th August 2022
UrgentComm

Motorola Solutions seeks contempt finding, global injunction against Hytera for not paying royalty dlvr.it/SW6Ldm

5th August 2022
UrgentComm

Humanoid robot explores shipwrecks dlvr.it/SW36fy

4th August 2022
UrgentComm

How IT teams can use ‘harm reduction’ for better cybersecurity outcomes dlvr.it/SW32rd

4th August 2022
UrgentComm

Increase in emergency-response time caused by insufficient staffing, traffic congestion dlvr.it/SW16zp

3rd August 2022
UrgentComm

Tepid demand, taxation fears drag at 2.5GHz spectrum auction for 5G dlvr.it/SW15Yt

3rd August 2022
UrgentComm

Newscan: Cyberattacks against critical infrastructure quietly increase dlvr.it/SVxr3P

2nd August 2022

Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookies Policy
  • Terms
Copyright © 2022 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.
This website uses cookies, including third party ones, to allow for analysis of how people use our website in order to improve your experience and our services. By continuing to use our website, you agree to the use of such cookies. Click here for more information on our Cookie Policy and Privacy Policy.
X