4 integrated-circuit security threats and how to protect against them

Matthew Areno, Dark Reading

July 14, 2021

3 Min Read
4 integrated-circuit security threats and how to protect against them

Today’s computing systems are up against an extraordinary volume of threats, and many of them target where these systems originate — in the supply chain and around critical integrated circuits (ICs). In fact, according to the ITRC, supply chain attacks impacted 694 entities in 2020, which ultimately affected more than 42 million individuals. Therefore, you can’t overstate the importance of understanding and addressing supply chain risks proactively. The best way to do this is to assess all potential attack vectors throughout the life cycle of an IC and a computing system.

There is a wide range of possible attacks throughout every stage of the IC life cycle. This can make ensuring the integrity of a computing system from end to end extremely challenging. To better understand these challenges, let’s explore some key IC supply chain threats and how to protect against them.

Four Lesser-Known Supply Chain Threats

There are a variety of known supply-chain threats, and they continue to evolve quickly. These attacks can happen across the various stages of the component life cycle, from design, integration, and fabrication to testing, provisioning, and deployment. While some are more commonly known — such as insider threats, malicious third-party plug-ins or design tools, design network attacks, malicious hardware and firmware, reverse engineering of components, physical alteration in transit, and fictitious recycling — let’s focus on some of the lesser-known vectors.

1. Design Alteration — Design modifications might occur during several different stages by various actors. A supplier might suggest a seemingly innocuous change that can induce an undefined state of execution in the system. An integrator might make a covert change to the design files provided as part of an integration effort. Some believe that design alteration was the end goal of the AutoCAD malware, and more recently, it played a role with SUNSPOT in the SolarWinds attack.

How can you mitigate this threat? Consider isolating design networks from traditional corporate networks, restrict third-party plug-in usage to trusted sources, and cryptographically validate all design tools, updates, and plug-ins before installation. Also, companies should use internally maintained repositories of design tools and use blockchain technology (or some other auditing tool) to create a ledger of all access events and modified design files.

2. Trojan Circuitry InsertionWhile still mostly an academic case, there’s evidence that multiple hardware Trojans exist but are not yet activated. Activation would expose the Trojan, so an attacker would wait to produce the biggest impact before triggering it. Trojan circuitry might occur during one of several different phases. Beyond Trojan circuitry in malicious hardware, other circuitry modifications could be made directly to printed circuit boards (PCBs). The result might be disclosure of sensitive information, control of the system, or part of a larger, multistep Trojan activation sequence. You can learn more about hardware Trojan insertion on IEEE or in this recent DEF CON presentation.

To read the complete article, visit Dark Reading.

 

About the Author

Subscribe to receive Urgent Communications Newsletters
Catch up on the latest tech, media, and telecoms news from across the critical communications community