UCLA develops human-powered medical wearables

Callum Cyrus, IoT World Today

October 11, 2021

1 Min Read
UCLA develops human-powered medical wearables

Soft sensors for medical wearable devices could soon generate electricity using the motions of the human body.

A soft, flexible self-powered bioelectronic device that converts human body motions into electricity has been created by a team of bioengineers at the Samueli School of Engineering at the University of California, Los Angeles (UCLA).

The magnetoelastic generator is the size of a U.S. quarter and produces a magnetoelastic effect that generates electricity as body motion triggers microscopic magnets affixed to a silicone matrix. The power can come from bending an elbow to subtle movements like the pulse from a wrist.

Metal alloys can also produce static electricity from the body to power devices, but their rigid nature doesn’t allow them to bend sufficiently to sit snugly around the skin, limiting the electricity they generate.

However, the university’s silicone material is designed to be soft and highly malleable. It’s also built to withstand sweat on the skin and humid weather conditions.

The device generated four times more than metal alloy equivalents and good enough potentially to generate power from the human pulse, according to the university.

To read the complete article, visit IoT World Today.

 

About the Author

Subscribe to receive Urgent Communications Newsletters
Catch up on the latest tech, media, and telecoms news from across the critical communications community