https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-new-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
    • IWCE’s Video Showcase
    • IWCE 2022 Winter Showcase
    • IWCE 2023 Pre-event Guide
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookie Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Omdia Crit Comms Circle Podcast
    • Galleries
    • IWCE’s Video Showcase
    • IWCE 2023 Pre-event Guide
    • IWCE 2022 Winter Showcase
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
    • Sponsored content
  • IWCE
    • Back
    • Conference
    • Why Attend
    • Exhibitor Listing
    • Floor Plan
    • Exhibiting Information
    • Join the Event Mailing List
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Cookie Policy
    • Terms of Service
    • Privacy Statement
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

System Design


The next phase of modulation

The next phase of modulation

OFDM is emerging as the choice for high-bit-rate services
  • Written by Urgent Communications Administrator
  • 1st May 2007

All wireless communications systems use some form of modulation to convert a baseband waveform, such as voice or data, to an analog signal that can be carried over the airwaves. The most frequently used digital modulation in land mobile radio is a discrete form of frequency modulation called frequency shift keying, or FSK.

The simplest form of FSK is binary FSK, where a negative shift of the radio carrier by fd Hz represents a binary 0, and a positive shift of the radio carrier by fd Hz represents a binary 1. There are many variations of FSK, including 4-ary FSK, which requires two bits to describe each frequency (sometimes called tones), and it is customary to call each two-bit word a channel symbol. Binary and 4-ary FSK are depicted in Figure 1. FSK can be extended to M-ary FSK, where M is any power of 2. As M gets large, we must either increase the channel bandwidth or pack the frequencies tighter. Packing frequencies beyond a certain point tends to worsen error performance, so there is no free ride with M-ary FSK.

Communication theory tells us that the closest we can separate FSK frequencies at passband without causing intersymbol interference (ISI) is 1/Rs, where Rs is the channel symbol rate. Or, if the frequency separation is fixed, the symbol rate is limited to the inverse of the frequency separation. Practical systems find it difficult to achieve this theoretical limit, and it is common for FSK frequencies to be separated by more than the minimum distance.

We also can modulate bits onto discrete phase shifts, rather than discrete frequencies. The binary form of this modulation is called binary phase shift keying (BPSK). In this case, the signal is shifted by 0 or 180° depending on whether the incoming bit is a 0 or a 1. If four phases are used, the modulation is called quadrature PSK (QPSK). Generally, M-ary PSK modulation schemes modulate symbols of length log2(M) bits onto one of M discrete phases. In differential PSK (DPSK), each symbol is encoded onto a phase shift instead of an absolute phase. DPSK has advantages on fading channels where it is difficult for the radio receiver to track carrier phase. Differential phase is easier to detect on a fading channel. A 16-PSK signal constellation is shown in Figure 2(a).

The reader will note from Figure 2 that M-ary PSK constellations have constant amplitude, at least at the sampling points. It also is possible to create constellations with multiple phases and multiple amplitudes. If these constellations are square, they are called M-ary quadrature amplitude modulation (QAM). A 16-QAM is shown in Figure 2(b). QAM constellations were first used in point-to-point microwave links, starting in the late 1970s. After techniques were developed to accurately track amplitude on time-varying channels, QAM began to appear on cellular radio systems, including Nextel’s iDEN air interface standard.

M-ary PSK and QAM constellations are popular on band-limited channels because they operate with multiple bits per symbol. The bandwidth of the signal is determined by the symbol rate, not the bit rate, so we can squeeze a higher bit rate out of the same bandwidth. The tradeoff is less power efficiency — higher-order constellations require more power to achieve the same bit-error rate.

All of the modulation techniques discussed thus far involve a single radio carrier. Another class of modulation techniques, called multicarrier modulation, employs multiple simultaneous modulated carriers. A particular form of multicarrier modulation, called orthogonal frequency division multiplexing (OFDM), is used in IEEE 802.11a and 802.11g, WiMAX, and several international terrestrial video broadcast standards. In the U.S., the MediaFLO video service offered on Verizon and Cingular cell phone networks employs a form of OFDM.

Just when the world appeared to be moving toward spread spectrum, code division multiple access (CDMA) for all 3G wireless standards, OFDM got a foothold. It is now widely used for wireless data, just not on cellular networks. The reason is driven mostly by bit rate. Today’s wireless data services require high bit rates to emulate the quality of service found in landlines, e.g., DSL and cable. Spread spectrum systems operate at high chip rates, but process gain turns the high chip rate into a more modest bit rate. The cellular carriers are doing innovative things with CDMA to boost bit rates over 2 Mb/s, but today’s Wi-Fi radios already operate as high as 54 Mb/s (over short distances).

On an LMR channel, one of the toughest impairments to overcome is a smearing in time of consecutive channel symbols called delay spread. Delay spread is a consequence of multipath fading. Modern narrowband radios mitigate the effects of delay spread through the use of adaptive equalizers. An adaptive equalizer continuously measures the time-varying impulse response of the channel and attempts to correct it to a flat frequency response across the channel bandwidth. However, 802.11 radios currently operating at 4.9 GHz are broadband, and equalizers for broadband channels are considered by many to be either impractical or ineffective. (This view is not universal, however.) Instead, IEEE 802.11 radios use OFDM.

IEEE 802.11a and 802.11g radios employ OFDM with 64 carriers. Of these, 48 are used for transporting user data, and four are pilot carriers used for synchronization. Twelve additional carriers exist in an algorithmic sense, but have no power. They are needed to ensure the total number of carriers is a power of 2. Each carrier is narrow enough that the designer assumes the frequency response is flat; therefore, no ISI should occur.

802.11g radios employ algorithms for automatically adjusting the instantaneous bit rate to the measured channel conditions. The bit rate is adjusted by varying both the signal constellation and the code rate of an error-correcting code. Table 1 on page 45 lists the required signal-to-noise ratio for each discrete bit rate for an 802.11g radio. Note that Table 1 assumes static conditions. A time-varying multipath fading channel will put greater stress on the receiver, and performance will generally be worse for the same average signal-to-noise ratio.

Although only a 20 MHz channel is specified in the 802.11 standard, some vendors also offer 10 MHz and 5 MHz channels. The channel bandwidth is fixed for a particular session and does not change automatically. Although the 10 MHz bit rates are exactly half the 20 MHz bit rates, the 10 MHz channel has one-half the equivalent noise bandwidth of the 20 MHz channel — resulting in a 3 dB improvement in sensitivity, which translates into longer range.

Another advantage of the 10 MHz channel is that its ability to mitigate delay spread is improved by a factor of 2. The 20 MHz channel has an inherent delay spread mitigation of no more than 0.8 microseconds (µs) [1]. Although this level of performance is helpful, outdoor delay spreads in the 2.4 GHz band have been measured above 2.0 µs. Thus, the delay spread robustness realized by using the 10 MHz channel (1.6 µs) could prove powerful in mobile receivers. Similarly, a 5 MHz channel (available from some vendors) will double the delay-spread mitigation again — and also improve sensitivity by 3 dB compared with the 10 MHz channel.

While the term “multiplexing” appears in its name, OFDM is not by itself a multiple access scheme. Instead, 802.11a and 802.11g both use a multiple access method called carrier sense multiple access with collision avoidance (CSMA/CA). In this protocol, the station receiver listens to the channel for a period of time to determine whether another station is transmitting. If the channel is busy, all other stations must wait a random period of time before checking the channel again. If the channel is clear, a station may transmit.


Jay Jacobsmeyer is president of Pericle Communications Co., a consulting engineering firm located in Colorado Springs, Colo. He holds bachelor’s and master’s degrees in Electrical Engineering from Virginia Tech and Cornell University, respectively, and has more than 25 years experience as a radio frequency engineer.

References:

  1. A. Goldsmith, Wireless Communications, Cambridge University Press, 2005.

Editor’s note: In the April issue, Harold Kinley’s byline was inadvertently omitted from “The key to RF signal amplifier specs.” MRT regrets the error.

Tags: Ad-Hoc Networks/Mesh Networking Local Area System Design Wireless Networks

Most Recent


  • The next phase of modulation
    IWCE speakers debate state of public-safety interoperability
    LAS VEGAS—Achieving comprehensive interoperability for mission-critical communications used by U.S. public-safety agencies continues to be an elusive goal, according to speakers addressing the topic during a Monday session at the IWCE 2023 event in Las Vegas. Some view interoperability as the technical ability for one person to communicate with another, no matter what device or […]
  • UK competition watchdog delays Airwave-Motorola Solutions ruling until April
    The Competition and Markets Authority (CMA) in the UK today announced that it plans to issue its final decision in April as part of an investigation of the Airwave TETRA network—a ruling that could investigation that could cost Motorola Solutions more than $1 billion in projected revenue during the next several years. CMA made the […]
  • AT&T claims LTE coverage edge, FirstNet build more than 99% done
    AT&T claims a 250,000-square-mile coverage advantage and that the planned five-year deployment of the FirstNet public-safety broadband network operating on the 700 MHz Band 14 spectrum licensed to the FirstNet Authority is more than 99% complete as a contractual deadline approaches this week. AT&T—the contractor responsible for building and maintaining the FirstNet public-safety broadband system—made […]
  • Verizon
    Verizon Frontline supports U.S. Forest Service efforts against wildfires
    Verizon Frontline increased its support of entities responding to wildland fires during 2022, particularly the U.S. Forest Service (USFS), which accounted for more than half of this activity by the carrier’s Crisis Response Team, according to the carrier. Cory Davis, Verizon’s assistant vice president for public safety, said that Verizon Frontline provided communications support to […]

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • IoT connectivity spending climbs as COVID-19 cases decline
  • The battle over connected cars drags on
  • APCO, NENA, NASNA speakers cite ‘discussions’ to address NG911 funding issues
  • PSCR: Dereck Orr highlights features of June 21-24 virtual event

Commentary


Updated: How ‘sidelink’ peer-to-peer communications can enhance public-safety operations

  • 1
27th February 2023

NG911 needed to secure our communities and nation

24th February 2023

How 5G is making cities safer, smarter, and more efficient

26th January 2023
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


UrgentComm

The Future of Interoperability for Dispatch Console Solutions dlvr.it/Slcp33

28th March 2023
UrgentComm

RT @IWCEexpo: A look in at the Panel Session of Interconnected Critical Networks - Voice, Video and Data Interoperability... #IWCE23 http…

28th March 2023
UrgentComm

RT @IWCEexpo: Wildfires are a growing concern, but technology can offer solutions. Fantastic panel moderated by @FirstNetGov this morning a…

28th March 2023
UrgentComm

IWCE speakers debate state of public-safety interoperability dlvr.it/SlcZ5L

28th March 2023
UrgentComm

UK competition watchdog delays Airwave-Motorola Solutions ruling until April dlvr.it/SlcNxN

28th March 2023
UrgentComm

Gallery: IWCE 2023 kicks off in Las Vegas dlvr.it/SlZlk4

28th March 2023
UrgentComm

AT&T claims LTE coverage edge, FirstNet build more than 99% done dlvr.it/SlXZfr

27th March 2023
UrgentComm

Verizon Frontline supports U.S. Forest Service efforts against wildfires dlvr.it/SlX1g3

27th March 2023

Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookie Policy
  • Terms
Copyright © 2023 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.