https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Events
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • Microwave/RF
    • T&D World
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Galleries
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Events
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
  • IWCE
    • Back
    • Conference
    • Special Events
    • Exhibitor Listings
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • Microwave/RF
    • T&D World
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

Wireless Networks


Designing simulcast networks

Designing simulcast networks

Simulcast is an abbreviation for simultaneous broadcast, and in the context of land mobile radio, it means simultaneous transmission from two or more repeater sites on the same radio frequency and with the same modulation.
  • Written by Urgent Communications Administrator
  • 1st November 2008

Simulcast is an abbreviation for simultaneous broadcast, and in the context of land mobile radio, it means simultaneous transmission from two or more repeater sites on the same radio frequency and with the same modulation. Simulcast has been around since the 1960s, but its popularity has increased recently — in part because modern technology has made simulcast more reliable.

Simulcast networks offer several advantages:

  • Overlapping coverage without handoff complexity.
  • Better trunking efficiency.
  • Simpler operation, especially for conventional (non-trunked) repeater systems.

Simulcast networks also employ voting receivers, which offer macro-diversity improvement on the inbound path.

Disadvantages of simulcast include high cost and signal distortion in simulcast-overlap regions. High cost results from more complex timing and control hardware, but also from the simple fact that each site must be populated with one repeater for each frequency used in the network. In contrast, a multisite system incorporates a handoff algorithm that chooses the site with the best signal. With multisite, the number of repeaters at each site is driven by traffic engineering considerations to ensure a low blocking probability.

Signal distortion in simulcast overlap regions also is referred to as time delay interference. TDI occurs when two or more simulcast signals arrive at the user’s radio antenna with comparable amplitude and relatively large delay. Note that both conditions must occur for TDI to be a problem. If one site dominates, the carrier-to-interference ratio (C/I) is sufficient to overcome the delayed signal no matter how long the delay. Conversely, if the two signal amplitudes are comparable and the C/I is low, short delays are still tolerable. Two simultaneous signals with short delays appear to the receiver as one signal and no noticeable distortion occurs. In fact, if the two signals are of equal amplitude, the receiver sees a signal that is 3 dB stronger than it would appear otherwise.

When to use simulcast

Because simulcast systems are pricey, the vendor may propose simulcast even when conditions don’t warrant it. The “better coverage” advantage often is oversold. True, seamless overlapping coverage is an advantage of simulcast, but multisite systems also have seamless overlapping coverage, provided an effective handoff algorithm is used. To control TDI in simulcast networks, it often is necessary to use directional antennas so only one site dominates in regions of long delays. Each repeater site is a major investment. If a 90°-beamwidth antenna is required to control TDI, then the site is providing only one-quarter of its potential coverage, but the cost is identical to the cost of an omnidirectional site.

The most compelling reason for choosing simulcast then is not coverage improvement, but lack of frequencies. When frequencies are in short supply, simulcast is the right solution.

Elements of a simulcast network

The essential elements of a simulcast network are the repeater sites (two or more), repeaters, antennas, multiplexer, voter comparator, accurate frequency reference, and interconnecting network. A block diagram of a simulcast network is shown in Figure 1.

The simulcast multiplexer performs an important function that is not obvious from its name: It introduces the relative baseband (audio) delay between sites to control TDI. Control of baseband delay and receiver voting are functions that occur in the control station, which often is co-located with one of the repeater sites. The interconnecting network usually employs T-1s, riding either landlines or microwave links. Public-safety agencies tend to favor a dedicated microwave network for reliability reasons and to preclude unwanted delays when landlines are rerouted by the telephone company. However, modern simulcast multiplexers measure actual delay and adjust timing dynamically, making landlines more attractive than in the past.

Early simulcast systems employed transmitters with custom-cut and matched crystal oscillators to ensure each transmitter was operating on precisely the same frequency. This approach was imperfect and repeated tuning was required as each crystal aged in order to keep the frequencies within specification. Later, expensive rubidium atomic clocks were used, but the modern approach is to employ specialized GPS receivers at each repeater site to train the transmitter’s oscillator.

TDI

Probably the most important question for the network designer is: How much TDI is too much? The answer depends on the particular modulation technique used and whether the system is analog FM or digital. Analog FM systems on 25 kHz channels typically can withstand two relatively strong, equal amplitude signals with up to 150 microseconds relative delay before speech is unintelligible, according to Garry C. Hess in Land-Mobile Radio System Engineering. Vendors of digital radio systems and analog trunked systems with control channels generally specify maximum TDI in terms of a combination of the number of overlapping signals, delay and C/I (sometimes called the “capture” ratio).

For example, the vendor of a trunked system with a 9600 bps binary FSK control channel might specify that the TDI can be no more than 32 microseconds (31% of a symbol period) in regions where the C/I is less than 12 dB, as long as there are just two overlapping signals. The delay requirement might be more stringent if there are three or more significant overlapping signals. An alternative approach is to specify a maximum root mean square (rms) delay spread, which is a weighted combination of multiple overlapping signals that takes into account the delay and amplitude of each signal.

Design approaches

When designing a simulcast network, the designer first uses computer propagation models or drive-test measurements to predict the coverage from each candidate site. Larger networks rarely are feasible if all repeater sites employ omnidirectional transmit antennas because harmful TDI is created in overlap regions, regardless of the particular time delays used. In this case, directional antennas are needed to control TDI. The number of possible combinations of delays and antenna patterns can be in the thousands, and even modern computers cannot model all possible combinations in the designer’s lifetime. Consequently, the designer may resort to rules of thumb.

One common rule of thumb is to employ an omnidirectional antenna at a single central site and employ directional antennas at the surrounding sites pointing away from the central site. Doing so makes control of TDI easier and more predictable. However, once the antenna patterns are chosen, other more effective combinations may not be considered. Often, it is feasible for two or more sites to employ omnidirectional antennas without causing harmful TDI in the service area, but this case may be overlooked because the rule of thumb was applied too soon.

Now let’s consider a real-world simulcast system where the owner started out with just one omnidirectional site, but later found that a second site could also employ omnidirectional antennas with much improved coverage and without harmful TDI.

The City of Aurora, Colo., operates a 20-channel, 800 MHz, four-site simulcast network. The designer designated one of the sites omnidirectional, and after a trial-and-error process in which multiple combinations of antenna pattern and delay were simulated using a computer model, he settled on the network configuration shown in Figure 2.

After the network was installed, some users complained of poor service west of Site 2. Because Site 2 employed a directional antenna pointing toward the northeast, an omnidirectional site (Site 1) served the area to the west. My firm was asked to consider potential improvements to the network, and the firm worked jointly with the vendor to test and implement viable solutions.

To accurately assess the radio coverage, we conducted drive-test measurements of the existing network, but we also measured signals from test transmitters with omnidirectional antennas temporarily installed at the three directional sites. In this way, we could assess both the existing coverage and the theoretical (but not necessarily achievable) best-case coverage using omnidirectional antennas at each site. Once the measurements were collected, we used computer software to apply directional antenna patterns to the measurements, testing many combinations of antenna pattern and delay.

Tags: Test & Measurement Wireless Networks

Related


  • Newscan: FBI received over 100,000 pieces of digital evidence after Capitol attack
    Newscan: FBI received over 100,000 pieces of digital evidence after Capitol attack
    Web Roundup Items from other news organizations FBI received over 100,000 pieces of digital evidence after Capitol attack Social workers to be sent to non-violent 911 calls for service in St. Petersburg, Fla. Minnesota cities turning to drones to help law enforcement Police investigating legitimacy of 911 call that prompted huge response to Connecticut home […]
  • Intelsat to test 4G connections to iPhones from stratosphere
    Satellite company Intelsat appears to be coming down to Earth. Or, at least a little lower. Specifically, Intelsat is asking for FCC permission to test LTE connections in Arizona from a “high-altitude platform system,” or HAPS. The company said the HAPS is an unmanned aircraft operated by Airbus, and that it will allow the company to offer […]
  • Connected fleets and EVs could pose greatest cyber risk, says GuardKnox
    Connected Fleets and EVs could be at the biggest risk of future mass infrastructure cyber hacks that automakers will have to gear up to prevent. That’s the view of  Moshe Shlisel, CEO of cyber-security specialist GuardKnox who points out that these automotive sectors have become important parts of a nation state’s core infrastructure. The company, […]
  • At CES 2021, Verizon touts 5G connectivity as enabler in pandemic times
    5G connectivity has continued to gather steam in technology circles and was the focus at the CES 2021 show this week. Verizon CEO Hans Vestberg delivered a keynote at CES, saying that 5G connectivity is “more than just another tech innovation.” But ample question remains about when 5G technology will truly deliver on its promise for […]

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • On the road with in-vehicle satellite navigation systems
  • Anterix signs 900 MHz spectrum lease with utility Ameren, expects more deals in near future
  • CableLabs forges agnostic wireless connection for operators
  • T-Mobile hacked--again

Commentary


Public safety needs a better way to triage emergency calls

13th January 2021

In challenging year, working with public safety to move FirstNet forward

30th December 2020

Communications solutions must evolve quickly to meet needs of a changing world

31st October 2020
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


UrgentComm

RT @IWCEexpo: 📆 Mark Your Calendars: IWCE will be returning to Las Vegas this September and registration is slated to open in April 📆 Wa…

15th January 2021
UrgentComm

RT @IWCEexpo: ⚡FLASH SALE: Don't miss this exclusive offer! Passes to #IBFVirtual are now 50% off with code TWITTER50. Take advantage of th…

6th November 2020
UrgentComm

Get ready for part 2 of "Ensuring Public Safety Emergency Communications" next week! @PCTEL_inc will explore… twitter.com/i/web/status/1…

3rd November 2020
UrgentComm

Over the past few months, we’ve seen the world transform, and it's clear that cities will be affected in the long-t… twitter.com/i/web/status/1…

27th October 2020
UrgentComm

Florida state & local agencies subscribing to the Statewide Law Enforcement Radio System (SLERS) will be able to co… twitter.com/i/web/status/1…

26th October 2020
UrgentComm

Tune in to @slacorp CEO Josh Lober as he explains how the company has fully integrated its #PTT application to work… twitter.com/i/web/status/1…

26th October 2020
UrgentComm

.@SierraWireless announced the commercial availability of the AirLink MG90 platform, which they tout as the first m… twitter.com/i/web/status/1…

26th October 2020
UrgentComm

Attorneys for #Hytera and #MotorolaSolutions this week submitted final written arguments, apparently clearing a pat… twitter.com/i/web/status/1…

22nd October 2020

Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • Microwave/RF
  • T&D World
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookies Policy
  • Terms
Copyright © 2021 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.
This website uses cookies, including third party ones, to allow for analysis of how people use our website in order to improve your experience and our services. By continuing to use our website, you agree to the use of such cookies. Click here for more information on our Cookie Policy and Privacy Policy.
X