https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-new-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
    • IWCE’s Video Showcase
    • Product Guides
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookie Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Omdia Crit Comms Circle Podcast
    • Galleries
    • IWCE’s Video Showcase
    • Product Guides
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
    • Sponsored content
  • IWCE
    • Back
    • Conference
    • Why Attend
    • Exhibitor Listing
    • Floor Plan
    • Exhibiting Information
    • Join the Event Mailing List
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Cookie Policy
    • Terms of Service
    • Privacy Statement
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

Test & Measurement


Demystifying RF attenuators

Demystifying RF attenuators

Creating a high-precision pad can be tricky--here's how to do it
  • Written by Urgent Communications Administrator
  • 1st November 2004

Many different small test accessories often are needed when performing radio frequency, or RF, test and measurement work. One such item is the RF attenuator, which typically consists of several individual “pads” that can be switched in or out to increase or decrease the total attenuation. (Generally, the word “pad” refers to a single fixed attenuator.) The RF attenuator is frequently used in many test and measurement procedures in radio communication; practical information on its construction and use is presented here.

Attenuators for audio frequencies are easily constructed out of ordinary resistors using a formula or chart to design the pad. However, RF represents a different ballgame. At high RFs, the design of the pad is much more stringent. Special resistors often are used to make a highly accurate pad. For example, a 6 dB pad might actually present 6 dB of attenuation at 1 MHz or lower but shows a significantly different attenuation at 150 MHz. If you are trying to make precise measurements, then high-precision attenuators are necessary.

Precision attenuators for RF applications are not cheap, and a variety of different attenuation levels often are needed; consequently, a well-equipped RF toolbox should contain a good variety of RF attenuators. Fixed attenuators of 3 dB, 6 dB and 10 dB are most often needed. RF attenuators are available with different RF connectors. Because of the quick connect/disconnect feature, the BNC connector is convenient for testing applications.

However, instead of BNC connectors, many RF devices feature UHF or Type N RF connectors. Unless you have the correct connector on the pad, RF adaptors will be required to make the transition from one type of connector to another. With the correct RF adaptor one can connect “anything to anything.” However, the liberal use of RF adaptors can lead to problems. If possible, it is best to use an RF pad with the proper RF connector for the particular application at hand. RF pads can be connected in a piggyback fashion to provide an attenuation equal to the sum of the individual pads. However, it is best to use a single pad with the proper attenuation, if possible.

Step attenuators also are available in a variety of different attenuation levels and can be used to provide attenuation values ranging from 1 dB to 100 dB or more. Switches for step attenuators may be simple toggle switches, rocker switches, slide switches or push-button switches. By switching in the appropriate attenuators, the attenuation can be increased or decreased in 1 dB steps. Attenuators may be constructed in the “T” configuration (Figure 1) or the “pi” configuration (Figure 2).

Table 1 shows the values of resistors used in the T pad for various attenuation values, while Table 2 shows the values of the resistors used in the pi pad for the same attenuation values. The attenuators are symmetrical, provided the input and output impedances are the same. In applications where attenuators are used as impedance-matching devices, they are not symmetrical.

Step attenuators are available in a variety of switching formats. They may be relay-programmable, TTL-programmable, GPIB-programmable and so on. No matter how the total attenuation is set, the principle is the same — individual pads equaling the total desired attenuation are switched into a cascade arrangement. The unused pads are simply bypassed by a straight-through connection.

Several different methods can be used to check the accuracy of an attenuator or a single pad. The simplest method is to use an ohmmeter to check the resistance. The resistance of an attenuator or pad designed for a 50 ohm system will show the same resistance on either side because they are of a symmetrical design. This is true whether the pad or attenuator is made in the T or pi configuration. This is not true of impedance-matching pads.

To determine the resistance that should be “seen” across the input or output of the pad or attenuator, you will need to know the resistance of the arm and leg resistors that make up the pad. The values of the arm and leg resistors for a few values of attenuation are shown in Table 1 for T pads and in Table 2 for pi pads. Using a 3 dB pi pad as an example, Table 2 shows that the arm resistor should be 17.6 ohms, and the leg resistors should be 292.4 ohms. Thus, the resistance seen across the input or output is 150.5 ohms. If a step attenuator is composed of pi pads, the test can be conducted with the 1 dB and 2 dB pads switched in and all others switched out. Or, just the 3 dB pad can be switched in, with all others out. The ohmmeter reading should be the same no matter how the 3 dB attenuation is obtained.

Another method that can be used is to connect a DC voltage of 1V across the input of the attenuator or pad (see Figure 3). For a 3 dB pad, the voltage appearing across the other side of the pad will be 0.708 volts. The voltage reduction factor can be determined by using the formula in Equation 1.

In Figure 3, 1 VDC is applied across the input to the 3 dB pad and 0.708 VDC is measured at the opposite side. It is important to note that a 50 ohm termination should be connected to the output side where the attenuated voltage is measured. If the measured voltage differs significantly from the calculated voltage, one or more of the resistors making up the pad has changed value.

While the two previous test procedures will reveal whether the resistors comprising the pad are of the correct value, the tests do not indicate the accuracy of the pad at RF frequencies. A couple of other methods can be used for the RF test.

Figure 4 shows a signal generator connected to an attenuator on one side and a RF voltmeter connected to the opposite side through a 50 ohm terminated “through” connector. The signal generator is set to the desired test frequency and the output level adjusted to a convenient level, such as -20 dBm. With all of the attenuation switched out, the reference reading on the RF voltmeter indicates the insertion loss of the attenuator. This is noted as the reference mark.

Then, a level of attenuation is switched in, such as 3 dB. The RF voltmeter should drop by 3 dB. Increasing the signal generator output level by 3 dB should return the RF voltmeter reading to the reference mark obtained at the beginning of the test procedure. This test should be run at increasingly higher frequencies until a point is reached where the accuracy of the attenuator fails to meet the required accuracy. All attenuator levels should be checked at each frequency.

Another way to do the RF test is to use a spectrum analyzer that can be set for scale divisions low enough to check the lowest attenuation level to be checked. For example, to check an attenuator at 1 dB attenuation, the spectrum analyzer should be set to 0.25 dB/division. This means that an attenuation of 1 dB will change the displayed signal by 4 divisions.

Generally, the dB/division control is set to the least value that will give maximum change of the displayed signal without going off the screen. To check for 5 dB attenuation, the signal generator is adjusted to 0 dBm, and the spectrum analyzer level is set to produce a display at the top of the reference scale with the dB/division control set to 1 dB/div. Then, with the 5 dB attenuator switched in, the display should drop by 5 divisions. Increase the signal generator level by 5 dB to ensure that the display returns to the previous level. This test should be run at all the frequencies at which you plan to use the attenuator or pad.

Typical uses of pads include the “padding” of the signal generator output to make sure the signal generator always sees a 50 ohm load impedance. When testing bandpass or reject cavities, both sides of the cavity should be connected through a pad of 3 dB to 6 dB of attenuation. Inputs and outputs of amplifiers often are padded to ensure stable operation. Pads are used in many test and measurement procedures to ensure measurement accuracy.

An important point to remember, above all, is to never key a transmitter into the pad. Unless the pad is designed to handle the transmitter power, the pad could be damaged severely, rendering it useless. Proper handling and care of the pad or attenuator will yield many years of reliable service. Handle with care!

Tags: System Management Call Center/Command content System Design System Operation Test & Measurement Tower & Site

Most Recent


  • AT&T wireless growth keyed by FirstNet—now provides 24,000 agencies with 4.4 million connections
    AT&T this week reported that FirstNet ended 2022 supporting more than 24,000 public-safety agencies with “about” 4.4 million connections, including 377,000 connections that were added during the last three months of 2022—a total that represents more than half of the carrier’s post-paid wireless growth for the quarter. AT&T officials released these figures in conjunction with […]
  • Report: Remote work causing offices to empty, but walkable cities still in high demand
    Given the reliance on vehicular transportation in the United States, some American cities historically haven’t prioritized being walkable in past planning and or design. But amid an unprecedented shift in the economy toward remote work, those that have are increasingly desirable for prospective residents. A new report from Smart Growth American and Places Platform, “Foot Traffic Ahead […]
  • AT&T FirstNet unleashes robotic dogs for emergency services
    AT&T is releasing robotic hounds from Ghost Robotics as part of the service provider’s FirstNet emergency responder service. In a blog, AT&T VP Lance Spencer explained that the robotic dogs will be connected to AT&T’s network and deployed for public safety, defense, federal and state agencies, local police and fire departments, and commercial customers. “Network-connected robotic dogs can deliver a […]
  • Federal agencies infested by cyberattackers via legit remote-management systems
    It has come to light that hackers cleverly utilized two off-the-shelf remote monitoring and management systems (RMMs) to breach multiple Federal Civilian Executive Branch (FCEB) agency networks in the US last summer. On Jan. 25, the Cybersecurity and Infrastructure Security Agency (CISA), National Security Agency (NSA), and Multi-State Information Sharing and Analysis Center (MS-ISAC) released […]

One comment

  1. Avatar Thomas Searcy 26th February 2014 @ 8:09 pm
    Reply

    Outstanding job on this
    Outstanding job on this explanation of attenuators in rf measurements. Thanks, Tom

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • New Orleans-area 911 center inks multiyear APEX deal with Carbyne to replace call-handling system
  • Cyber is the new Cold War, and AI is the arms race
  • Microsoft patches 6 zero-day vulnerabilities under active attack
  • AI energizes remote monitoring of patients, fuels bidirectional health care

Commentary


How 5G is making cities safer, smarter, and more efficient

26th January 2023

3GPP moves Release 18 freeze date to March 2024

18th January 2023

Do smart cities make safer cities?

  • 1
6th January 2023
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


UrgentComm

AT&T wireless growth keyed by FirstNet—now provides 24,000 agencies with 4.4 million connections dlvr.it/ShY5qH

27th January 2023
UrgentComm

Report: Remote work causing offices to empty, but walkable cities still in high demand dlvr.it/ShXM7Z

27th January 2023
UrgentComm

AT&T FirstNet unleashes robotic dogs for emergency services dlvr.it/ShW7p8

27th January 2023
UrgentComm

Federal agencies infested by cyberattackers via legit remote-management systems dlvr.it/ShVhn3

26th January 2023
UrgentComm

How 5G is making cities safer, smarter, and more efficient dlvr.it/ShVS1h

26th January 2023
UrgentComm

MCPTT interworking for critical communications dlvr.it/ShTm3P

26th January 2023
UrgentComm

Self-driving cars present terrorism risk, FBI director says dlvr.it/ShTTHx

26th January 2023
UrgentComm

UK Home Office officially will cut ESN ties with Motorola Solutions in December dlvr.it/ShNjfN

24th January 2023

Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookie Policy
  • Terms
Copyright © 2023 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.