https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-new-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
    • IWCE’s Video Showcase
    • Product Guides
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookie Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Omdia Crit Comms Circle Podcast
    • Galleries
    • IWCE’s Video Showcase
    • Product Guides
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
    • Sponsored content
  • IWCE
    • Back
    • Conference
    • Why Attend
    • Exhibitor Listing
    • Floor Plan
    • Exhibiting Information
    • Join the Event Mailing List
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Cookie Policy
    • Terms of Service
    • Privacy Statement
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

Call Center/Command


Tower-top amplifiers and noise figure (Part 2 of 2)

Tower-top amplifiers and noise figure (Part 2 of 2)

How external interference affects amplifier performance
  • Written by Urgent Communications Administrator
  • 1st September 2005

Part 2 of 2

Last month in Tech Speak, we introduced the concept of noise figure and calculated the noise figure improvement created by a tower-top amplifier in a system limited by receiver thermal noise. This month, we examine the case where a tower-top amplifier must operate in the presence of external interference as well as thermal noise.

Let’s consider the same hypothetical example as last month: a five-channel 800 MHz trunked radio system operating in the NPSPAC band (821 MHz to 824 MHz, 866 MHz to 869 MHz). The receive antenna is located on a tower 350 feet above ground, and there is a 50-foot coaxial cable that runs from the tower to the repeater. The existing system does not employ a tower-top amplifier (TTA), and the system manager wants to know if a TTA will improve the talk-back range. Figure 1 shows the block diagrams for the existing and proposed systems.

Note that the gain in the receiver multicoupler amplifier is 18 dB in the original system and 9 dB with the TTA. This gain reduction is necessary to reduce the chance of receiver overload and receiver intermodulation. As we noted last month, the net gain with the TTA is still higher than the original system (15.3 dB versus 6.3 dB) and therefore the system with the TTA is more vulnerable to receiver overload and receiver intermodulation.

We also showed last month that by applying Equation 1 to the two configurations shown in Figure 1, we find that the composite noise figure without the TTA is 7.4 dB, and the composite noise figure with the TTA is 3.8 dB. In other words, the noise figure and hence receiver sensitivity are improved by a factor of 3.6 dB [7.4 dB – 3.8 dB] in the absence of interference.

Now let’s consider the effect of interference. Our objective is to measure or deduce the interference power at the repeater site, compute the C/(I+N) with and without the TTA, and thereby quantify the improvement offered by the amplifier.

Rather than measure the interference power directly, we choose to measure the effect of the interference on receiver sensitivity. We will measure three receivers and average the results. The figure-of-merit is 12 dB SINAD, and two measurements are taken for each receiver, one with the receiver terminated in a 50 Ohm load and one with the receiver connected to the receive antenna on the tower. The test configuration is shown in Figure 2, with the results listed in Table 1 (below).

Now let’s make the simplifying assumption that interference has the same effect on SINAD as thermal noise. Let N = thermal noise power and I = interference power. From Table 1, we found that the introduction of external interference decreased the C(I+N) by a factor of 4 (6 dB). Therefore, (I + N)/N = 4.0 and I = 3N. In other words, the interference power at the receiver front-end is a factor of 3 (4.8 dB) stronger than the thermal noise power in the receiver when no tower-top amplifier is used.

Now, if we add the TTA to this system, we know the C/N will be improved by 3.6 dB, but how much will the C/(I+N) be improved? Remember that the TTA amplifies the carrier and the interference equally, so the C/I is constant through the system. Also, recall that the composite noise figure is 3.8 dB, and the noise figure of the receiver is 6 dB.

Thus, there is a net reduction in thermal noise (relative to the carrier) of 6.0 – 3.8 = 2.2 dB. In other words, the thermal noise power in the receiver, relative to the carrier, is 60% of the original. (The actual noise power is higher than the original noise power because of amplification, but we are only concerned about the noise power relative to the carrier.) We want the sum of the interference power and the noise power in the receiver. We can calculate it in terms of the original thermal noise power, N, as

I + N = 3N + 0.60N = 3.6N

versus I + N = 4N for the original system. In decibels, the improvement in sensitivity is 10log10(4.0/3.6) = 0.46 dB. Thus, the performance benefit of the TTA is reduced from a theoretical best case of 3.6 dB to only 0.46 dB because interference is present.

The editor limits this column to 1200 words, so I will leave it as a homework assignment to show that for an interference desense of a and a TTA noise figure improvement relative to the receiver of b, the C/(I+N) improvement is simply a/(a+ 1/b – 1).

In general, compute the potential TTA improvement as follows:

  • Step 1: Measure the desense caused by external interference, a.

  • Step 2: Compute the composite noise figure of the prospective TTA system.

  • Step 3: Compute the ratio of the receiver NF to the composite TTA NF, b.

  • Step 4: Improvement = IMP = a/(a + 1/b – 1), with a > 1 and b > 1.

  • Step 5: Convert to dB; IMP = 10log10(IMP) dB.

Table 2 (below) lists the TTA improvement factors for some typical values of interference desense, a, and noise figure improvement relative to the receiver, b.

It should be clear from Table 2 that a TTA is not always the magic bullet. If interference is strong relative to the thermal noise floor, the TTA will offer little improvement in receiver sensitivity.

Before giving up on the tower-top amplifier, the system manager should determine whether the interference originates offsite or locally. If the interference is local (co-site interference), it should be isolated and corrected so the TTA can do its intended job. If the interference originates offsite, there may be no recourse.


Jay Jacobsmeyer is president of Pericle Communications Co., a consulting engineering firm located in Colorado Springs, Colo. He holds a bachelor’s and master’s degree in electrical engineering from Virginia Tech and Cornell University, respectively, and has more than 20 years experience as a radio frequency engineer.

Table 1
Uplink Interference Measurements
Channel Frequency (MHz) 12 dB SINAD Terminated (dBm) 12 dB SINAD Over-the-Air (dBm) Desense (dB)
1 821.6375 -121.3 -115.7 5.6
2 822.1750 -121.1 -115.2 5.9
3 822.7250 -122.4 -116.0 6.4
Table 2
Improvement in C/(I+N) Created by TTA (dB)
Noise Figure Improvement Relative to Receiver Noise Figure = b (dB)
Desense = a (dB) 1 2 3 4 5 6
0 1.0 2.0 3.0 4.0 5.0 6.0
1 0.8 1.5 2.2 2.8 3.4 3.9
2 0.6 1.2 1.6 2.1 2.5 2.8
3 0.5 0.9 1.2 1.6 1.8 2.0
4 0.4 0.7 1.0 1.2 1.4 1.5
5 0.3 0.5 0.7 0.9 1.1 1.2
6 0.2 0.4 0.6 0.7 0.8 0.9
7 0.2 0.3 0.5 0.6 0.6 0.7
8 0.1 0.3 0.4 0.4 0.5 0.5
9 0.1 0.2 0.3 0.3 0.4 0.4
10 0.1 0.2 0.2 0.3 0.3 0.3
Tags: Power Call Center/Command content Test & Measurement Tower & Site

Most Recent


  • Public-safety coalition renews efforts to secure federal NG911 funding
    A coalition of public-safety associations today reiterated its support for federal legislation that would provide the funding needed to pay for 911 centers to migrate from legacy technologies to an IP-based next-generation 911 (NG911) platform that is designed to support multimedia communications, as well as traditional voice calls. Representatives of the Public Safety Next Generation […]
  • Tower-top amplifiers and noise figure (Part 2 of 2)
    Newscan: Cyberattacks on DoE national labs draw lawmaker scrutiny
    Web Roundup Items from other news organizations Cyberattacks on DoE national labs draw lawmaker scrutiny Blinken postpones trip to Beijing after Chinese spy balloon spotted over U.S., officials say To protect satellites, secure your networks, chief of space ops says Ransomware offlines Arizona’s largest school district Mending the fabric: FCC says to file broadband-location challenges […]
  • The shine begins to wear off 5G private wireless
    Verizon had high hopes for private wireless networking. The company had predicted that by now it would be well on its way to making billions of dollars from the sale of custom 4G and 5G networks dedicated exclusively to its enterprise customers. Indeed, during 2021 Verizon execs pegged the total addressable market for private wireless at around […]
  • Phishers trick Microsoft into granting them 'verified' Cloud Partner status
    Late last year, a group of threat actors managed to obtain “verified publisher” status through the Microsoft Cloud Partner Program (MCPP). This allowed them to surpass levels of brand impersonation ordinarily seen in phishing campaigns, as they distributed malicious applications bolstered by a verified blue badge only ever given to trusted vendors and service providers in […]

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • Tower-top amplifiers and noise figure (Part 2 of 2)
    Newscan: Feds recover millions from pipeline ransom hackers, hint at U.S. Internet tactic
  • Cyber is the new Cold War, and AI is the arms race
  • Private wireless networks in the US start going public
  • Microsoft patches 6 zero-day vulnerabilities under active attack

Commentary


How 5G is making cities safer, smarter, and more efficient

26th January 2023

3GPP moves Release 18 freeze date to March 2024

18th January 2023

Do smart cities make safer cities?

  • 1
6th January 2023
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


UrgentComm

Public-safety coalition renews efforts to secure federal NG911 funding dlvr.it/ShwGfn

4th February 2023
UrgentComm

Newscan: Cyberattacks on DoE national labs draw lawmaker scrutiny dlvr.it/Shvpw3

3rd February 2023
UrgentComm

The shine begins to wear off 5G private wireless dlvr.it/Shth0P

3rd February 2023
UrgentComm

Phishers trick Microsoft into granting them ‘verified’ Cloud Partner status dlvr.it/Shqngn

2nd February 2023
UrgentComm

Shapeshifting robot can morph from a liquid to a solid dlvr.it/Shqk9K

2nd February 2023
UrgentComm

Automakers against stampede to BEV dominance dlvr.it/ShpX08

2nd February 2023
UrgentComm

FCC nominee Gigi Sohn headed for third Senate hearing dlvr.it/ShpDcZ

1st February 2023
UrgentComm

Sign up to learn how to successfully manage your Motorola ASTRO® 25 System: spr.ly/60143j8fp https://t.co/XcxiUwzN27

1st February 2023

Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookie Policy
  • Terms
Copyright © 2023 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.