https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-new-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • Microwave/RF
    • T&D World
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Omdia Crit Comms Circle Podcast
    • Galleries
    • IWCE’s Video Showcase
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
    • Sponsored content
  • IWCE
    • Back
    • Conference
    • Why Attend
    • Exhibitor Listing
    • Floor Plan
    • Exhibiting Information
    • Join the Event Mailing List
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

Call Center/Command


Error-control coding for P25 radios

Error-control coding for P25 radios

Project 25 is a digital radio airlink standard designed to create interoperability on 12.5 kHz and 6.25 kHz channels. Although Project 25 radios can pass
  • Written by Urgent Communications Administrator
  • 1st March 2006

Project 25 is a digital radio airlink standard designed to create interoperability on 12.5 kHz and 6.25 kHz channels. Although Project 25 radios can pass voice or data communications, this article will focus strictly on error-control coding for voice communications.

P25 modulation comes in two flavors, Compatible 4 FM (C4FM) and Compatible Quadrature Phase Shift Keying (CQPSK) [1]. C4FM is intended for Phase I P25 systems that operate on 12.5 kHz channels, while CQPSK is intended for Phase II P25 systems that will operate on 6.25 kHz channels. In both cases, the signaling rate is 4.8 k symbols per second (sps) and there are two bits per symbol for a gross bit rate of 9.6 kb/s.

The vocoder (voice encoder/decoder) adopted by the APCO Project 25 committee is the Improved Multi-Band Excitation (IMBE) vocoder, developed by Digital Voice Systems Inc. [2]. The IMBE vocoder operates at a basic rate of 4.4 kb/s, but an additional 2.8 kb/s is required for error-control coding. Thus, the bit rate for the vocoder and its error-control coding is 7.2 kb/s. An additional 2.4 kb/s is used for channel signaling, so the gross bit rate is 9.6 kb/s.

Rather than think in terms of bit rate, we also can think in terms of bits per vocoder frame. Each frame is 20 milliseconds (ms) long (50 frames per second) and contains 88 vocoder bits, 56 error-control-coding bits and 48 signaling bits for a total of 192 bits.

A full explanation of the IMBE vocoder is beyond the scope of this article, but suffice it to say that unlike most cell phone vocoders, IMBE was optimized for low bit-rate applications (less than 4.8 kb/s). However, like most cell phone vocoders, IMBE is model-based, meaning that rather than sending digital samples of voice, the vocoder sends the parameters to be used in a human speech model.

Fewer bits are needed to specify the model parameters, and both the transmitter and the receiver include a full description of the model before they leave the factory. The IMBE vocoder and its successor, AMBE, also are used in many satellite voice networks, including Iridium’s.

The mobile radio channel is hostile to digital communications, and for best performance, the error-control-coding scheme must be adapted to the channel’s characteristics. Because of multipath fading, the mobile radio channel is inherently a burst-error channel, and compatible correcting techniques should be employed. Candidate burst-error-correcting techniques include Reed-Solomon codes and interleaving (which can be used with any code).

The protection provided by the 56 error-control-coding bits is not applied equally over the 88 vocoder bits. Some vocoder bits are more important for intelligibility than others, so nearly all modern vocoders, including IMBE, apply error-control coding unequally. IMBE uses three principal coding techniques: interleaving, Hamming codes, and Golay codes. The signaling protocol (56 bits per frame) employs other coding techniques, including Reed-Solomon codes and trellis coded modulation. We’ll limit the following discussion to the IMBE techniques: interleaving, Hamming and Golay codes.

Bit interleaving is used to spread short bursts of errors among several code words. The error-correction decoder is less likely to be overwhelmed if these bursts of errors arrive in multiple code blocks. The frame is interleaved in such a way that the minimum separation between any two bits of the same error-correction code is 3 symbols, or 6 bits [2]. Long bursts, such as those that occur when the user is walking or driving slowly, will be longer than the interleaver depth, so the interleaver design is not perfect. The designer is forced to make tradeoffs because greater interleaver depth means longer delay, and very long delays cannot be tolerated, especially on voice networks.

The 56 error-control bits are divided between four (23, 12) Golay codes and three (15, 11) Hamming codes. Both codes are binary block codes. Recall that an (n, k) binary block code has k information bits and n-k parity bits. In our case, there are 4×11 parity bits for the Golay codes plus 3×4 parity bits for the Hamming codes, for a total of 56 error-control bits. Figure 2 shows the arrangement of bits in the vocoder frame.

Hamming codes can correct just one error per code word. They often are used in a shortened form in other communication systems for error detection and are called cyclic redundancy checks, but in P25, the Hamming code is used strictly for error correction. The Hamming code is a single error-correcting perfect code.

The (23, 12) Golay code has some unique properties. It is the only known multiple-error-correcting binary perfect code. It can correct any combination of three or fewer random errors in a block of 23 bits.

So, what is a perfect code? Recall from January’s Tech Speak that we can represent a code word in decoding space as the center of a sphere of radius t, where t is the number of errors the code can correct. The encoder takes k bits at time and encodes them into an n-bit code word. For a binary code, there are 2k code words, but there are 2n possible n-tuples to consider at the decoder because bit errors may occur on the channel.

For nearly all codes, many of the n-tuples will fall outside any sphere, and this information can be used to detect an errored code word even if it cannot be corrected. For the very small class of perfect codes (there are only two non-trivial binary perfect codes), all n-tuples fall within a decoding sphere. This relationship is shown in Figure 3.

If this were a data system, the use of error-control codes would be relatively straightforward. Some number of parity bits would be dedicated to error detection to ensure a small probability of undetected errors. The remaining parity bits would be used for error correction. Those frames with uncorrectable error patterns (as determined by the error-detection code) would be re-transmitted using some form of automatic repeat request (ARQ), an error-correcting technique that always delivers error-free code words, but at the cost of decreased throughput.

Voice systems are different. Because voice quality is subjective, we have another bag of tricks to mitigate the effect of bit errors.

The IMBE vocoder performs error estimation as part of the decoding process. The speech decoder estimates the number of errors in each received frame by computing the number of errors corrected by each of the (23, 12) Golay codes and each of the (15, 11) Hamming codes (a total of 7 code words per frame). The expression for the error estimate is found in reference [2] on page 45 or in Equations 1 and 2. It includes an estimate of the number of errors in the current frame plus a weighted version of the error estimate of the previous frame. Thus, the algorithm looks back at earlier frames and has some ability to detect trends.

When we say the number of errors corrected, we really mean the number of errors the decoder thinks it corrected. For example, if the received Golay n-tuple differs from the nearest valid code word in 1 bit position, the decoder must assume there is just one error. However, the code word may actually have five errors, placing it in an entirely different decoding sphere. This is an example of decoding failure, and it affects the accuracy of the error estimate. When the error rate is high, the probability of decoding failure also is high, and the error estimate will be somewhat flawed.

Once the error estimate is computed, the decoder does the following:

  1. If the error estimate is below some threshold, it decodes the frame normally.

  2. If the error estimate is above the threshold, it:

  • repeats the frame,

  • mutes the frame or

  • performs adaptive smoothing of the frame.

When a frame is repeated, the assumption is that it is better to “stretch” the speech fragment rather than deliver a frame that is known to have problems. Remember that a frame is only 20 ms long, so a single repeat may not be noticeable to the human ear.

In a severe bit-error environment, a frame is muted. When muted, a replica of white noise is created, sometimes called “comfort noise.”

Adaptive smoothing allows the decoder to take information from the previous frame and the next frame (there is a two-frame look-ahead in IMBE) to “smooth” the effects of the errored frame. Adaptive smoothing only is done over an intermediate range of bit error estimates.


Jay Jacobsmeyer is president of Pericle Communications Co., a consulting engineering firm located in Colorado Springs, Colo. He holds bachelor’s and master’s degrees in Electrical Engineering from Virginia Tech and Cornell University, respectively, and has more than 20 years experience as a radio frequency engineer.

References:


  1. TIA-102.BAAA-A, “Project 25 FDMA: Common Air Interface,” Sept. 2003.

  2. TIA-102.BABA, “Project 25 Vocoder Description,” Dec. 2003.

  3. S. Lin and D.J. Costello Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, 1983.

Tags: Call Center/Command content Project 25

Most Recent


  • Researchers developing health-monitoring e-tattoo
    Stories of people embedding digital devices into their bodies are becoming increasingly common; with these digital implants capable of everything from aiding mobility to paying for products, unlocking doors and storing data. A team of researchers from the Korea Advanced Institute of Science and Technology have taken a similar concept and applied it to the […]
  • Partnership launches no-cost wastewater monitoring service for local governments
    Of all the important lessons cities and counties have learned since the pandemic began, high up on the list is the value of working together. No one community can solve cross-jurisdictional challenges alone—that’s a concept that’s at the heart of a new initiative launched by the National League of Cities (NLC) and WastewaterSCAN that brings no-cost wastewater monitoring […]
  • Verizon Frontline demos connectivity and emergency response to chemical spill drill
    CARY, NC – On a hot and humid morning last week, the Verizon Frontline Response Team gathered in the parking lot outside a local Verizon office building to address a chemical spill emergency. Fortunately, what looked like a jet fuel leak in and around nearby Lake Crabtree from a tanker accident on Interstate 40 was […]
  • Research claims driverless tech still too easy to trick
    Autonomous vehicles can be easily manipulated into performing undesirable driving behavior through the placement of ordinary objects on the roadside, according to a study from the University of California, Irvine (UCI). The research team set up a course on the UCLA campus to test the reactions of driverless cars, running the open-source AD systems Apollo […]

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • New Orleans-area 911 center inks multiyear APEX deal with Carbyne to replace call-handling system
  • Error-control coding for P25 radios
    Newscan: Feds recover millions from pipeline ransom hackers, hint at U.S. Internet tactic
  • Cyber is the new Cold War, and AI is the arms race
  • Private wireless networks in the US start going public

Commentary


LTE and liability: Why the fire service must move forward with digital incident command

  • 2
6th May 2022

Partnership and collaboration must be the foundation for emergency communications

18th April 2022

FirstNet success means no hypothetical ‘shots’ need to be fired, Swenson says

22nd February 2022
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


UrgentComm

Cisco confirms data breach, hacked files leaked dlvr.it/SWV8l9

12th August 2022
UrgentComm

Researchers developing health-monitoring e-tattoo dlvr.it/SWV749

12th August 2022
UrgentComm

Partnership launches no-cost wastewater monitoring service for local governments dlvr.it/SWV5PK

12th August 2022
UrgentComm

Verizon Frontline demos connectivity and emergency response to chemical spill drill dlvr.it/SWV4cg

12th August 2022
UrgentComm

Research claims driverless tech still too easy to trick dlvr.it/SWMDts

10th August 2022
UrgentComm

Coalition expresses urgent need to NG911 funding, wants more than proposed $10 billion dlvr.it/SWL5VW

9th August 2022
UrgentComm

APCO releases NG911 guide, quickly clarifies stance on NENA’s i3 standard dlvr.it/SWKcCY

9th August 2022
UrgentComm

10 malicious code packages slither into PyPI registry dlvr.it/SWKHxl

9th August 2022

Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookies Policy
  • Terms
Copyright © 2022 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.
This website uses cookies, including third party ones, to allow for analysis of how people use our website in order to improve your experience and our services. By continuing to use our website, you agree to the use of such cookies. Click here for more information on our Cookie Policy and Privacy Policy.
X