https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-new-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • Microwave/RF
    • T&D World
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Omdia Crit Comms Circle Podcast
    • Galleries
    • IWCE’s Video Showcase
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
    • Sponsored content
  • IWCE
    • Back
    • Conference
    • Why Attend
    • Exhibitor Listing
    • Floor Plan
    • Exhibiting Information
    • Join the Event Mailing List
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

Wireless Networks


Connecting on a personal level

Connecting on a personal level

Inexpensive, low-power wireless devices let computer users "plug" into peripherals
  • Written by Urgent Communications Administrator
  • 1st November 2007

A personal area network, or PAN, is a computer network that enables communication between computer devices near a person. PANs can be wired, such as USB or FireWire, or they can be wireless, such as infrared, ZigBee, Bluetooth and ultrawideband, or UWB. The range of a PAN typically is a few meters. Examples of wireless PAN, or WPAN, devices include cell phone headsets, wireless keyboards, wireless mice, printers, bar code scanners and game consoles.

Wireless PANs feature battery-operated devices that draw very little current. Sleep modes commonly are used to further extend battery life. Network protocols tend be simpler than Wi-Fi or WiMAX (to reduce required processor power), and the transmit power is typically less than 1 milliwatt.

In the United States, PANs for the most part operate in two unlicensed bands: 902-928 MHz and 2.4-2.4835 GHz. Ultrawideband devices also can operate in the 3.1-10.6 GHz band, coexisting with other radio services by employing low overall power and ultra-low power densities (watts/Hz).

Let’s examine three of the most popular PAN technologies: ZigBee, Bluetooth and ultrawideband.

ZigBee is a short-range, low-power computer networking protocol that complies with the IEEE 802.15.4 standard. In the U.S., ZigBee devices operate in the 902-928 MHz and 2.4 GHz unlicensed bands. The technology is intended to be less complex and less expensive than other WPANs such as Bluetooth. Although ZigBee is a WPAN protocol, it also is used for telemetry applications such as automatic meter reading and building automation.

ZigBee employs direct-sequence spread spectrum modulation with a gross data rate of 40 kb/s in the 900 MHz band and 250 kb/s in the 2.4 GHz band. Advertised transmission range is from 10 to 75 meters, but like any radio system, the actual range depends on the environment.

There are three types of ZigBee devices: ZigBee Coordinator (ZC), ZigBee Router (ZR), and ZigBee End Device (ZED). The ZC is the most capable device, forming the root of the network tree and bridging to other networks. There is only one ZC per network. The ZR can run an application function as well as act as an intermediate router, passing data from other devices. A ZED contains just enough functionality to talk to its parent node, which is a coordinator or a router. It can sleep most of the time, extending its battery life.

The ZigBee Alliance is a trade organization charged with developing and publishing the Zigbee standard and promoting its use.

Bluetooth is a computer networking protocol designed for short-range, low-power communications in the 2.4 GHz unlicensed band. It was named after King Harald Bluetooth, ruler of Denmark and Norway in the late 10th century. Sven Mattison and Jaap Haartsen, both employees of Ericsson Mobile Platforms in Lund, Sweden, published the first Bluetooth standard in 1994. The current version of the standard is 2.1 and specifies gross data rates up to 3 Mb/s.

Bluetooth employs frequency-hopping spread spectrum modulation with a rate of up to 1600 hops per second using 79 different channels, each 1 MHz wide. Because the technology uses a spread spectrum signal and low power, it is less likely to cause harmful interference to other 2.4 GHz devices, such as Wi-Fi radios, that often exist in the same personal computer. There are three classes of Bluetooth devices corresponding to different transmit power levels. Class 1, 2 and 3 devices operate at up to 100 mW, 2.5 mW and 1 mW, respectively.

Bluetooth networks normally operate in a master-slave configuration. A master device can communicate with up to seven active slave devices, and this network of up to eight devices is called a piconet. Up to 255 additional devices can be inactive or parked, waiting for wakeup instructions from the master.

The technology implements confidentiality, authentication and key derivation using algorithms based on the SAFER+ block cipher.

The Bluetooth Special Interest Group is a privately held, nonprofit trade association organized to promote Bluetooth in the marketplace and to develop Bluetooth standards.

Ultrawideband is a radio technology useful for short-range, high-bandwidth communications that does not create harmful interference to users sharing the same band. By FCC definition, a UWB signal has a bandwidth that exceeds the lesser of 500 MHz or 20% of the arithmetic center frequency. Such a bandwidth exceeds all conventional spread spectrum radio systems, and the resulting low power density ensures the signal does not cause harmful interference. (See Figure 1.)

The FCC allows UWB devices to operate in the 3.1-10.6 GHz band. In this band, the emission limit is -41.3 dBm per MHz, which is the Part 15 limit for unintentional emissions in this band. Unlike conventional radios, which continuously modulate a sinusoidal carrier, UWB radios are short-duration pulse generators. The occupied bandwidth is roughly equal to the inverse of the pulse duration. The duty cycle of UWB signals is usually quite low, but the net throughput is still high because the burst information rate during the pulse can be more than 100 Mb/s.

A pulse-based UWB method is the basis of the IEEE 802.15.4a draft standard and working group, which has proposed UWB as an alternative physical layer protocol to ZigBee.

The WiMedia Alliance is a trade association organized to promote UWB and develop standards.

In addition to these three, other WPANs include Wibree, an ultra-low-power complement to Bluetooth; Wireless USB; EnOcean, composed of self-powered devices; and 6loWPAN, which allows IPv6 packets to ride 802.15.4 networks. These will be discussed in a future issue.


Jay M. Jacobsmeyer, P.E., is president of Pericle Communications Co., a consulting engineering firm in Colorado Springs, Colo. He holds BS and MS degrees in electrical engineering from Virginia Tech and Cornell University, respectively, and has more than 25 years of experience as a radio frequency engineer.

Tags: Personal Area Wireless Networks

Most Recent


  • FirstNet PTT technical progress highlighted by AT&T at APCO 2022
    FirstNet PTT—the mission-critical-push-to-talk (MCPTT) service launched in 2020—continues to evolve with the development of much-anticipated features like LMR interoperability and broadcast technology that will support one-to-many calls, an AT&T official said during a presentation at the recent APCO 2022 event in Anaheim, Calif. FirstNet users can use numerous different push-to-talk (PTT) applications that leverage the […]
  • Researchers developing health-monitoring e-tattoo
    Stories of people embedding digital devices into their bodies are becoming increasingly common; with these digital implants capable of everything from aiding mobility to paying for products, unlocking doors and storing data. A team of researchers from the Korea Advanced Institute of Science and Technology have taken a similar concept and applied it to the […]
  • Verizon Frontline demos connectivity and emergency response to chemical spill drill
    CARY, NC – On a hot and humid morning last week, the Verizon Frontline Response Team gathered in the parking lot outside a local Verizon office building to address a chemical spill emergency. Fortunately, what looked like a jet fuel leak in and around nearby Lake Crabtree from a tanker accident on Interstate 40 was […]
  • Verizon Frontline deploys 1,000 connectivity services for nationwide wildfire response efforts
    In response to almost 70 large fires that have burned 1,690,492 acres nationwide this year, the Verizon Frontline Response Team said it has deployed about 1,000 Verizon Frontline services to support wildland firefighters across 18 states. As of last week, the top five states for acres burned from wildfires include Alaska, New Mexico, Texas and Florida, according to […]

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • The battle over connected cars drags on
  • UK officials revamp ESN plans again, target Airwave-to-LTE transition for end of 2026
  • PSCR: Dereck Orr highlights features of June 21-24 virtual event
  • FirstNet buildout on pace for March 2023 completion, AT&T official says

Commentary


LTE and liability: Why the fire service must move forward with digital incident command

  • 2
6th May 2022

Partnership and collaboration must be the foundation for emergency communications

18th April 2022

FirstNet success means no hypothetical ‘shots’ need to be fired, Swenson says

22nd February 2022
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


UrgentComm

FirstNet PTT technical progress highlighted by AT&T at APCO 2022 dlvr.it/SWZtNJ

13th August 2022
UrgentComm

Newscan: D.C. appeals court upholds FCC decision to share 5.9 GHz V2V spectrum with Wi-Fi dlvr.it/SWZQpx

13th August 2022
UrgentComm

Cisco confirms data breach, hacked files leaked dlvr.it/SWV8l9

12th August 2022
UrgentComm

Researchers developing health-monitoring e-tattoo dlvr.it/SWV749

12th August 2022
UrgentComm

Partnership launches no-cost wastewater monitoring service for local governments dlvr.it/SWV5PK

12th August 2022
UrgentComm

Verizon Frontline demos connectivity and emergency response to chemical spill drill dlvr.it/SWV4cg

12th August 2022
UrgentComm

Research claims driverless tech still too easy to trick dlvr.it/SWMDts

10th August 2022
UrgentComm

Coalition expresses urgent need to NG911 funding, wants more than proposed $10 billion dlvr.it/SWL5VW

9th August 2022

Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookies Policy
  • Terms
Copyright © 2022 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.
This website uses cookies, including third party ones, to allow for analysis of how people use our website in order to improve your experience and our services. By continuing to use our website, you agree to the use of such cookies. Click here for more information on our Cookie Policy and Privacy Policy.
X