https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-new-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
    • IWCE’s Video Showcase
    • IWCE 2022 Winter Showcase
    • IWCE 2023 Pre-event Guide
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookie Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Omdia Crit Comms Circle Podcast
    • Galleries
    • IWCE’s Video Showcase
    • IWCE 2023 Pre-event Guide
    • IWCE 2022 Winter Showcase
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
    • Sponsored content
  • IWCE
    • Back
    • Conference
    • Why Attend
    • Exhibitor Listing
    • Floor Plan
    • Exhibiting Information
    • Join the Event Mailing List
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Cookie Policy
    • Terms of Service
    • Privacy Statement
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

Wireless Networks


Beyond the hype

Beyond the hype

LTE base stations are quite different from today's LMR repeater sites, with positive and negative implications.
  • Written by Urgent Communications Administrator
  • 1st June 2010

In the August 2009 issue of this magazine, we discussed the technology behind Long Term Evolution (LTE), the fourth generation standard for cellular phones. LTE also will be the nationwide standard for public-safety broadband wireless networks. Three organizations — the Association of Public-Safety Communications Officials (APCO), the National Emergency Number Association (NENA) and the National Public-Safety Telecommunications Council (NPSTC) — have endorsed LTE as the technology standard for the proposed 700 MHz national broadband network for first responders. At the time of this writing, the FCC had not released spectrum for public-safety agencies to construct LTE networks, but when these organizations get the green light, it will be important to understand how LTE networks are constructed and how their base stations differ from LMR repeater sites.

LTE refresher. Public safety seeks to exploit the economies of scale created by a worldwide commercial wireless network based on a single standard. LTE is fast, with peak data rates of 100 Mbps downlink and 50 Mbps uplink (assuming a 2 × 20 MHz channel). Downlink and uplink are decoupled for the first time in a cellular network. Third generation and older systems use Frequency Division Duplexing (FDD), which means that one band of frequencies is used for the downlink (base station to mobile user) and another band of frequencies is used for the uplink (mobile user to base station). Such a system uses spectrum inefficiently when the traffic is unbalanced, i.e., when there is more traffic on the downlink than the uplink. LTE offers both FDD and Time Division Duplexing (TDD), which means the uplink and downlink speeds need not be identical, so operators can better optimize their networks to use more uplink channels. LTE also is IP-based, so all traffic, including voice, is packetized. Advantages of LTE over earlier technologies include high throughput, low latency and a simple architecture resulting in low operating costs. LTE also supports seamless connection to existing 2G and 3G networks, including GSM, CDMA, UMTS and EV-DO.

LTE employs orthogonal frequency division multiplexing (OFDM), which is the same technique used by Wi-Fi and WiMAX, but LTE devices are not necessarily interoperable with Wi-Fi or WiMAX. The waveform parameters for LTE are listed in Table 1.

Implications for network build-out. One of the first questions asked regarding a LTE network deployment is “How many base station sites are needed to provide adequate coverage?” The answer, as always, is “It depends.” Does the user require service to vehicles with rooftop antennas or to indoor handheld users? What minimum bit rate is required? In general, the higher the bit rate, the greater the minimum signal that is required, and the smaller the coverage area per base station.

However, if one is comparing LTE, which nearly matches the theoretical capacity of the channel, with an older technology like Project 25, the differences in service threshold may not be as great as one might think. In multipath fading, a typical P25 radio provides satisfactory digital voice service at a threshold of -106 dBm. In contrast, an LTE radio link operating at its lowest bit rate of 750 kbps might require -102 dBm — only 4 dB shy of P25 performance — but it will provide a much higher throughput. The reader should note that the lowest bit rate depends on the particular configuration of LTE employed and on how the network is provisioned by the network operator.

The stark differences show up when higher bit rates are needed and low-power handheld devices are used. A city the size of Denver might operate a seven-site 800 MHz public-safety radio network with good in-building coverage, while a wireless operator in the same city operates a network with more than 100 cell sites covering the same geographical area. Many of these cell sites are needed for capacity rather than coverage, but it is likely that an LTE network still will dwarf any radio network the public-safety agency previously has deployed.

The sheer number of sites creates backhaul issues. For reliability reasons, public-safety agencies favor licensed microwave links. But spectrum for licensed microwave is a scarce resource and wireless operators typically rely on landlines, with microwave used only in exceptional cases. And LTE bandwidth requirements are eye-opening. Wireless operators are provisioning LTE cell sites with Gigabit Ethernet backhaul, while a typical trunked radio site might get by with a single T-1 line.

Land-mobile radio networks typically do not reuse radio frequencies in the same metropolitan area, but LTE networks operate all sites on the same frequency. Thus, high sites that work great for LMR may cause excessive co-channel interference in an LTE network.

Unlike most LMR systems, LTE employs antenna diversity and sites with multiple-in, multiple-out (MIMO) technology that may have four antennas per sector. Twelve antennas per site is not an uncommon configuration. Consequently, rooftop and tower leases that charge a fee for each antenna should be avoided.

The good news is that LTE infrastructure size, weight, power and costs are considerably lower per site than cellular 3G infrastructure or trunked radio infrastructure. Backhaul is TCP-IP and network protocols and management tools will be familiar to the agency’s IT department.

Further, modern radio systems are integrated with the antenna and outdoor cabinets are the norm — no shelters are required.

LTE infrastructure requirements are daunting and one can see why the FCC envisioned a shared network between a nationwide commercial provider and public safety. The commercial wireless operator can spread its costs over millions of subscribers, while the public-safety agency has more modest subscriber counts and a much smaller budget. Because of those comparatively smaller budgets, it may not be feasible for public safety to go it alone regarding LTE, despite its lower equipment costs relative to 3G.

Jay Jacobsmeyer is president of Pericle Communications Co., a consulting engineering firm located in Colorado Springs, Colo. He holds bachelor’s and master’s degrees in electrical engineering from Virginia Tech and Cornell University, respectively, and has more than 25 years experience as a radio-frequency engineer.

Related Stories

  • Best in class: Why public safety is endorsing 4G LTE for 700 MHz broadband data
  • LTE priority access discussions should include 3G
  • LTE equipment configuration makes guard-band question a key item
  • Stars begin to align for public-safety LTE
TABLE 1: LTE Waveform Parameters
Channel bandwidth 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz
1 resource block=180 kHz 6
Resource blocks
15
Resource blocks
25
Resource blocks
50
Resource blocks
75
Resource blocks
100
Resource blocks
Modulation schemes Downlink: QPSK, 16 QAM, 64 QAM
Uplink: QPSK, 16 QAM, 64 QAM (optional for handset)
Multiple access Downlink: OFDMA (orthogonal frequency division multiple access)
Uplink: SC-FDMA (single carrier frequency division multiple access)
MIMO technology Downlink: Wide choice of MIMO configuration options for transmit diversity, spatial multiplexing and cyclic delay diversity (maximum 4 antennas at basestation and handset)
Uplink: Multi-user collaborative MIMO
Peak data rate Downlink: 150 Mbps (UE category 4, 2 × 2 MIMO, 20 MHz)
300 Mbps (UE category 5, 4 × 4 MIMO, 20 MHz)
Uplink: 75 Mbps (20 MHz)
Source: Rohde & Schwarz
Tags: Call Center/Command Wireless Networks

Most Recent


  • Verizon
    Verizon, Axon demonstrate benefits of 5G network slicing to support public-safety video
    Verizon and Axon Enterprises this week announced a successful demonstration of 5G network slicing that allowed its network to sustain connectivity performance levels for mission-critical video through Axon Fleet 3 and Axon Respond services. Network slicing is one of the most-anticipated features of the 5G standard for the critical-communications industry, because it allows a network […]
  • Cyberattack closes emergency rooms in three states
    Ardent Health says it was the target of a cyberattack over Thanksgiving, in an incident that shut down the hospital operator’s emergency rooms in three states. The hospital operator, which oversees 30 hospitals in the U.S., said the attack was detected on the morning of Nov. 23 and was identified as a ransomware attack impacting […]
  • General Electric, DARPA hack claims raise national-security concerns
    General Electric and the Defense Advanced Research Projects Agency (DARPA) have reportedly been breached, according to claims on the Dark Web that the organizations’ highly sensitive stolen data is up for sale. A screen capture from the Dark Web ad shows a threat actor named IntelBroker selling access credentials, DARPA-related military information, SQL files, and more. GE confirmed to […]
  • More 2G and 3G shutdowns loom in the U.S.
    UScellular and Cellcom recently set dates to shutter their aging wireless networks. The smaller network operators are following in the footsteps of their bigger, nationwide rivals, which are making similar moves. On its website, UScellular said it would shutter its 3G CDMA network on January 14, 2024. “Major wireless carriers have already shut down their […]

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • The battle over connected cars drags on
  • UK officials revamp ESN plans again, target Airwave-to-LTE transition for end of 2026
  • PSCR: Dereck Orr highlights features of June 21-24 virtual event
  • FirstNet buildout on pace for March 2023 completion, AT&T official says

Commentary


Land mobile radio (LMR) systems are just as vulnerable to cyberattacks as any other networks used in the public-safety sector. Here’s what to do about it.

  • 1
7th November 2023

September 3GPP Plenary meetings feature Release 18 progress, Release 19 beginnings

13th October 2023

Better technology can help solve the public-safety staffing crisis

26th June 2023
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookie Policy
  • Terms
Copyright © 2023 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.