https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-new-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
    • IWCE’s Video Showcase
    • IWCE 2022 Winter Showcase
    • IWCE 2023 Pre-event Guide
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookie Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Omdia Crit Comms Circle Podcast
    • Galleries
    • IWCE’s Video Showcase
    • IWCE 2023 Pre-event Guide
    • IWCE 2022 Winter Showcase
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
    • Sponsored content
  • IWCE
    • Back
    • Conference
    • Why Attend
    • Exhibitor Listing
    • Floor Plan
    • Exhibiting Information
    • Join the Event Mailing List
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Cookie Policy
    • Terms of Service
    • Privacy Statement
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

content


Drive-test surveys back in spotlight

Drive-test surveys back in spotlight

The ongoing reconfiguration of the 800 MHz band, i.e., rebanding, has created renewed interest in the drive-test survey. Rebanding requires modifications
  • Written by Urgent Communications Administrator
  • 1st April 2006

The ongoing reconfiguration of the 800 MHz band, i.e., rebanding, has created renewed interest in the drive-test survey. Rebanding requires modifications to both network infrastructure and user radios, so there always is some risk that the rebanded system will not match the performance of the original. The licensee naturally wants proof the two systems are equivalent, especially in terms of geographical coverage. One way to verify equivalent coverage is the drive-test survey.

Because drive testing is labor intensive and expensive, it should not be done haphazardly (see story on page 8). One must employ accurate, efficient and thorough collection methods to ensure the results are unambiguous.

All rebanding projects require a thorough set of repeater site measurements before and after rebanding. These measurements should not be abandoned simply because drive-test surveys will be conducted. We don’t want to discover a problem with the survey, be forced to correct the problem and redo the survey when the problem should have been discovered at the outset.

The fundamental elements of the drive-test survey are the receiver system, the drive routes and the methods to ensure reproducibility. The receiver should employ an omnidirectional antenna, its sensitivity should be equal to or better than the user radio, it must be accurate (+/- 1.5 dB) and it should have high dynamic range. The receiver should also be computer-controlled and include GPS data-logging. The service area boundaries should be well-defined, and the drive routes should be developed prior to conducting the survey. Ideally, measurements should be collected on a uniform grid, but alternatively, randomly distributed data can be plotted to a uniform grid during post-processing.

One must drive a dense grid that includes both thoroughfares and side streets. To ensure the results are reproducible (in a statistical sense), the identical receiver system should be used for each survey. In addition, the surveys should be done during the same time of year, and identical routes should be driven.

Now that we have identified the fundamentals, let’s consider what we are measuring. The mobile radio channel is rarely line-of-sight, and the received signal is the sum of many reflected and diffracted signals. The term multipath fading is used to describe the time-varying amplitude and phase that characterize the composite signal at the receiver.

These fluctuations are usually modeled as Rayleigh fading with Rayleigh-distributed amplitude and uniformly distributed phase [2]. Figure 1 is a plot of amplitude versus time for a typical Rayleigh fading mobile radio channel.

Mobile and portable receivers are usually specified to operate with a minimum local mean in the presence of Rayleigh fading. Thus, for the survey to be a useful indicator of receiver performance, we should measure the local mean, not the instantaneous signal. Estimating the local mean requires that we average subsample measurements of the instantaneous signal over some distance. The preferred minimum distance is 40 wavelengths, as it adequately smooths the Rayleigh fading [1], [3]. Long averaging distances tend to include changes in the local mean due to location variability and are therefore not desirable. However, there is no ironclad rule on the maximum averaging distance.

A minimum number of subsamples is required to get an accurate estimate of the local mean within the averaging distance (again, a minimum of 40 wavelengths). The usual rule of thumb is 50 subsamples as this number ensures a 90% confidence interval of +/- 1 dB if the amplitude is Rayleigh-distributed [1]. (There appears to be an error in the equation on page 123 of TSB-88-B. See page 90 of TSB-88-A for the correct expression.)

Drive-test measurements are random variables and one should not assume that measurements taken at the same location on two different days will be identical. There are simply too many variables beyond our control. There is, of course, the measurement tolerance of the test receiver, but even a perfect receiver cannot control the time-varying environment surrounding the receiver. Variations between measurements at discrete locations are normal and do not necessarily indicate a problem with the rebanded system.

Rather than compare discrete locations, one should compare performance using an area-wide metric, specifically the service area reliability [1]. The service area reliability is the probability that a particular location, picked at random, will have adequate service. Adequate service typically is defined as a measured signal above a threshold, say -99 dBm.

The service area reliability is estimated by computing the ratio of the number of measured locations above the threshold to the total number of locations measured, as depicted by Equation 1.

We now know how to collect measurements and what performance metric to use, but what is the minimum number of measurements required to ensure an accurate estimate?

To answer this question, we first model each measurement sample as an independent trial with probability of success, p, where p is the probability that the measurement is above the service threshold. (Remember that the measurement sample is actually a linear average of at least 50 subsamples collected over at least 40 wavelengths.)

The number of successes in n trials is a binomial random variable that we will designate x. If we conduct an experiment with n trials and observe x successes, the point estimate for p is simply x/n.

However, a point estimate alone tells us nothing about the accuracy of the estimate. What we really need is a measure of confidence that the point estimate, x/n, resides in a small interval around p. For our application, an appropriate confidence level is 90% and a reasonable confidence interval is +/- .02. In other words, we want to know the required number of samples to ensure the estimate is inside the confidence interval of +/- .02 with a confidence level of 90%.

Using the normal approximation to the binomial distribution, one can show an approximation of the required minimum number of samples is given by Equation 2 [4], [5].

However, Equation 2 is not entirely satisfactory because it includes the parameter we want to estimate, p. However, the product p(1-p) will always be less than or equal to ¼. Thus, the worst-case minimum value of n is calculated using Equation 3.

For zα/2=1.65 and d=+/-.02, we find n=1702. Thus, we require at least 1702 samples to achieve the required confidence level and confidence interval. Because most surveys result in some bad data that cannot be used, the survey should allow for somewhat larger sample sizes, say n=1750. Note that this value corresponds to the number of uniformly collected or uniformly plotted measurements.

If before and after measurements are taken at the same time of year using the same test receiver and antenna, the measured service area reliability should be reproducible within a range equal to twice the confidence interval. Why twice the confidence interval? Because each value of measured service area reliability is only an estimate of the actual service area reliability. For example, let’s assume a 90% confidence interval of +/-2% and an actual service area reliability of 95% (known only to the omniscient). If the pre-rebanding service area reliability estimate is 97% and the post-rebanding service area reliability estimate is 93%, both are within the confidence interval centered on the actual value, but they are not within +/- 2% of each other.

If, after collecting the pre-rebanding measurements, the service area reliability is found to be high (e.g., > 95%), one might be tempted to retain the number of plotted grid measurements, n, but narrow the 90% confidence interval, d, using Equation 2. We don’t recommend this approach as it tightens the equivalency requirement so much that other variables not considered explicitly in the statistical analysis may skew the results.


Jay Jacobsmeyer is president of Pericle Communications Co., a consulting engineering firm located in Colorado Springs, Colo. He holds bachelor’s and master’s degrees in Electrical Engineering from Virginia Tech and Cornell University, respectively, and has more than 20 years experience as a radio frequency engineer.

References:

  1. EIA TSB-88-B, “Wireless Communications Systems – Performance in Noise and Interference-Limited Situations, Recommended Methods for Technology-Independent Modeling, Simulation and Verification,” With Addendum 1, May, 2005.

  2. W.C. Jakes, ed., Microwave Mobile Communications, IEEE Press Reissue, 1994.

  3. W. C. Y. Lee, Mobile Cellular Telecommunications Systems, McGraw-Hill, 1989.

  4. R. J. Larsen, M. L. Marx, An Introduction to Mathematical Statistics and its Applications, Prentice-Hall, 1986, pp. 281.

  5. C. Hill and B. Olson, “A Statistical Analysis of Radio System Coverage Acceptance Testing,” IEEE Vehicular Technology Society News, February, 1994.

  6. J.M. Jacobsmeyer and G.W. Weimer, “Guidelines for Conducting Drive Test Surveys for 800 MHz Rebanding,” October 1, 2005. Available at www.pericle.com.

Equation 1

Service Area Reliability(%)= Tp/Tt 100%

where
Tp is the total number of grid points passed (e.g., those where C > -99 dBm)
Tt is the total number of grid points measured

Equation 2

n= Z2α/2p(1 – p)/d

where zα/2 is the argument of the unit normal distribution for a confidence of 1-αα and d is one-half of the confidence interval [4], [5]. For example, for 90% confidence, zα/2 = 1.65.Iquisl ut lummy num iuscidunt acidunt vent landre magnissectet alit, vullam, consed dolorerat vel utat. Tie tat lutat, quisis

Equation 3

n=Z2α/2/4d2

Tags: content Rebanding

Most Recent


  • 800 MHz rebanding work nears completion, could be finished in less than a year, according to FCC official
    Originally slated to be a three-year project that would be completed more than a decade ago, the 800 MHz rebanding initiative is nearing completion and could be done next year, according to information from an FCC official and a recent FCC filing from Sprint, which has funded the massive rebanding effort. Michael Wilhelm, chief of […]
  • FCC votes early to advance 900 MHz broadband proposal from pdvWireless
    FCC commissioners yesterday voted unanimously to adopt a long-awaited notice of proposed rulemaking (NPRM) that would let pdvWireless consolidate its many slivers of 900 MHz narrowband spectrum into a 3×3 MHz swath that could support dedicated LTE broadband services for utilities and other enterprises. FCC commissioners initially were scheduled to vote on the 900 MHz […]
  • Progress in Mexico means 800 MHz rebanding “close” to being done, FCC official tells NPSTC board
    With key 800 MHz licensees in Mexico completing their spectrum relocation, there is a “light at the end of [the] tunnel” of the massive and oft-delayed 800 MHz rebanding initiative, an FCC official recently told the governing board of the National Public Safety Telecommunications Council (NPSTC).
  • Drive-test surveys back in spotlight
    FCC sets timeline for 4.9 GHz comments, will initiate 911 dispatchable-location proceeding
    Public safety and other interested parties can submit comments to the FCC about proposed rules for the 4.9 GHz band by July 6, and the agency plans to begin a proceeding to examine rules mandating that dispatchable-location information be transmitted with all 911 calls, an FCC official said this week.

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • FCC closes book on 800 MHz rebanding after almost 17 years
  • Transition Administrator notifies FCC of 800 MHz rebanding completion
  • RugGear: Contributing to the future of mission-critical broadband communication review and market vision
  • Drive-test surveys back in spotlight
    Newscan: Sprint tells FCC only two licensees have not completed 800 MHz rebanding process

Commentary


Updated: How ‘sidelink’ peer-to-peer communications can enhance public-safety operations

  • 1
27th February 2023

NG911 needed to secure our communities and nation

24th February 2023

How 5G is making cities safer, smarter, and more efficient

26th January 2023
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


UrgentComm

How AT&T won DFW Airport’s $10 million private 5G business dlvr.it/Spj4Pt

27th May 2023
UrgentComm

Russia’s war in Ukraine shows cyberattacks can be war crimes dlvr.it/Spj3c2

27th May 2023
UrgentComm

FCC grants 700 MHz Band 14 license renewal to FirstNet Authority dlvr.it/Spj2Ny

27th May 2023
UrgentComm

Broadband for Critical Communications Everywhere Providing Connectivity When Seconds Count dlvr.it/Sph602

26th May 2023
UrgentComm

How vehicle insurance and autonomy intertwined dlvr.it/SpglBb

26th May 2023
UrgentComm

World’s least-expensive self-driving vehicle revealed dlvr.it/Spgc88

26th May 2023
UrgentComm

Voice calling is finally making its way onto 5G dlvr.it/SpdtYW

26th May 2023
UrgentComm

With many cities facing a fiscal cliff as ARPA funding ends, debt ceiling debate continues on Capitol Hill dlvr.it/Spdsnq

26th May 2023

Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookie Policy
  • Terms
Copyright © 2023 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.