https://urgentcomm.com/wp-content/themes/ucm_child/assets/images/logo/footer-new-logo.png
  • Home
  • News
  • Multimedia
    • Back
    • Multimedia
    • Video
    • Podcasts
    • Galleries
  • Commentary
    • Back
    • Commentary
    • Urgent Matters
    • View From The Top
    • All Things IWCE
    • Legal Matters
  • Resources
    • Back
    • Resources
    • Events
    • Webinars
    • White Papers
    • Reprints & Reuse
  • IWCE
    • Back
    • IWCE
    • Conference
    • Special Events
    • Exhibitor Listings
    • Premier Partners
    • Floor Plan
    • Exhibiting Information
    • Register for IWCE
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • Mission Critical Technologies
    • Microwave/RF
    • T&D World
    • TU-Auto
  • In the field
    • Back
    • In the field
    • Broadband Push-to-X
    • Internet of Things
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Call Center/Command
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Network Tech
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Operations
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Regulations
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • Organizations
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
Urgent Communications
  • NEWSLETTER
  • Home
  • News
  • Multimedia
    • Back
    • Video
    • Podcasts
    • Galleries
  • Commentary
    • Back
    • All Things IWCE
    • Urgent Matters
    • View From The Top
    • Legal Matters
  • Resources
    • Back
    • Events
    • Webinars
    • White Papers
    • Reprints & Reuse
    • UC eZines
    • Sponsored content
  • IWCE
    • Back
    • Conference
    • WHY ATTEND
    • Exhibitor Listings
    • Floor Plan
    • Exhibiting Information
    • Registration Opens April 2019-Join Our Mailing List
  • About Us
    • Back
    • About Us
    • Contact Us
    • Advertise
    • Terms of Service
    • Privacy Statement
    • Cookies Policy
  • Related Sites
    • Back
    • American City & County
    • IWCE
    • Light Reading
    • IOT World Today
    • TU-Auto
  • newsletter
  • In the field
    • Back
    • Internet of Things
    • Broadband Push-to-X
    • Project 25
    • Public-Safety Broadband/FirstNet
    • Virtual/Augmented Reality
    • Land Mobile Radio
    • Long Term Evolution (LTE)
    • Applications
    • Drones/Robots
    • IoT/Smart X
    • Software
    • Subscriber Devices
    • Video
  • Call Center/Command
    • Back
    • Artificial Intelligence
    • NG911
    • Alerting Systems
    • Analytics
    • Dispatch/Call-taking
    • Incident Command/Situational Awareness
    • Tracking, Monitoring & Control
  • Network Tech
    • Back
    • Cybersecurity
    • Interoperability
    • LMR 100
    • LMR 200
    • Backhaul
    • Deployables
    • Power
    • Tower & Site
    • Wireless Networks
    • Coverage/Interference
    • Security
    • System Design
    • System Installation
    • System Operation
    • Test & Measurement
  • Operations
    • Back
    • Critical Infrastructure
    • Enterprise
    • Federal Government/Military
    • Public Safety
    • State & Local Government
    • Training
  • Regulations
    • Back
    • Narrowbanding
    • T-Band
    • Rebanding
    • TV White Spaces
    • None
    • Funding
    • Policy
    • Regional Coordination
    • Standards
  • Organizations
    • Back
    • AASHTO
    • APCO
    • DHS
    • DMR Association
    • ETA
    • EWA
    • FCC
    • IWCE
    • NASEMSO
    • NATE
    • NXDN Forum
    • NENA
    • NIST/PSCR
    • NPSTC
    • NTIA/FirstNet
    • P25 TIG
    • TETRA + CCA
    • UTC
acc.com

Narrowbanding


Article

A fine line

A fine line

Cost often will determine the choice between FDMA and TDMA to meet the FCC's narrowbanding requirements.
  • Written by Urgent Communications Administrator
  • 1st January 2011

Users in the VHF and UHF bands (below 512 MHz) face a mandatory FCC narrowbanding deadline of Jan. 1, 2013. Narrowbanding is a spectrum-efficiency requirement that initially requires the equivalent of at least one user per 12.5 kHz for voice channels or capacity of at least 9.6 kbps per 12.5 kHz for data channels. The FCC intends to further squeeze VHF and UHF land mobile radio channels to 6.25 kHz (or equivalent), but no formal deadline has been established for this second phase. However, many licensees are choosing 6.25 kHz-compliant solutions now to avoid expensive upgrades in the future.

The narrowbanding deadline forces licensees to make technology decisions, particularly decisions regarding the multiple access method. This is the technique used to share radio spectrum among multiple simultaneous users. There are three basic techniques used in land mobile and cellular radio: frequency division multiple access (FDMA), time division multiple access (TDMA) and code division multiple access (CDMA). FDMA separates users by frequency — each user occupies its own radio channel. TDMA separates users by time — each user occupies the entire radio channel, but at different time slots. The differences between FDMA and TDMA are shown in Figure 1 (right). On the top, two users share 12.5 kHz of bandwidth utilizing two channels (FDMA); on the bottom, the single TDMA channel employs two time slots per frame per user.

CDMA separates users by a set of spread-spectrum codes. Users share the same frequency at the same time, but the code set has good cross-correlation and auto-correlation properties that allow users to be separated at the radio receiver using a spread-spectrum correlator. CDMA with 1.25 MHz channels is used today by Verizon Wireless, Sprint, Cricket, Alltel and other cellular operators, but it is not under consideration for land mobile radio primarily because the FCC has not allocated sufficient spectrum for CDMA radio channels. The argument for land mobile radio users then really comes down to FDMA versus TDMA.

The other technology choice forced by narrowbanding is digital versus analog. The effect of narrowbanding on analog FM radios was covered in the April 2010 issue of this magazine, so we won’t cover this topic here, other than to state that analog FM radios are limited to FDMA systems and it is not practical to operate analog FM on 6.25 kHz channels, as the FCC’s spectrum mask cannot be met. For our purposes, we will assume that both FDMA and TDMA systems are digital.

In practice, TDMA systems are really a combination of FDMA and TDMA. Radio channels are allocated in some fashion, say 25 kHz or 12.5 kHz, and two to four users share each radio channel using separate time slots. TDMA systems include Project 25 Phase II, TETRA, and proprietary systems such as Motorola’s Mototrbo. FDMA systems for 6.25 kHz channels include NXDN (jointly developed by Icom and Kenwood) and dPMR (digital private mobile radio, an ETSI standard). Vendors supporting TDMA products created an advocacy organization called the Digital Mobile Radio Association (DMR) which can be found at dmrassocation.org. Similarly, FDMA vendors have their own organizations: nxdn-forum.com and dpmr-mou.org.

Because the FCC already has allocated the VHF and UHF bands using relatively narrow channels at the maximum (i.e., 25 kHz), the practical problem is how best to use the allocated channel. Should we employ FDMA and further subdivide the frequency channel into smaller user channels, or should we retain the radio channel width and share the channel using TDMA time slots? In a perfect theoretical world where brick-wall filters are realizable and no practical implementation problems exist, one could attain the same spectrum efficiency with either FDMA or TDMA. In the real world, several issues must be considered:

  • Receiver sensitivity.
  • Adjacent channel interference and the near-far problem.
  • Battery life.
  • Spectrum planning and licensing issues.
  • Transmitter combiner costs.
  • Oscillator frequency drift from crystal aging.
  • Peer-to-peer mode.

Let’s examine each of these issues in turn.

Receiver sensitivity. The TDMA receiver requires a wider intermediate frequency (IF) bandwidth so, all else being equal, the FDMA receiver should have better sensitivity and therefore better coverage.

Adjacent channel interference and the near-far problem. Because of practical filter-implementation problems, increasingly narrow channel allocations are not able to maintain the same channel selectivity as wider channels. In other words, channel selectivity does not scale perfectly. Consequently, narrowband receivers generally are more susceptible to adjacent-channel interference. For example, from Appendix A of TSB-88.1-C, we see an 11 dB difference in adjacent-channel power between NXDN at 6.25 kHz offset and P25 Phase I at 12.5 kHz offset. This interference is one example of the near-far problem, where a strong nearby transmitter desensitizes a receiver trying to capture a weak signal from a distant user. The difference in performance can be mitigated through good frequency planning at the expense of spectrum efficiency.

Battery life. Battery life is affected in large part by the radio transmitter. TDMA advocates often cite the fact that a two-slot TDMA radio transmits only 50% of the time, so battery life must be longer in the TDMA radio. In practice, TDMA radios may have longer battery life, but this advantage is not due entirely to the time-slot duty cycle. All else being equal, both TDMA and FDMA receivers require the same energy per bit for acceptable performance. In other words, the two-slot TDMA radio must transmit twice the transmit power to have the same energy per bit as the FDMA radio.

Spectrum planning and licensing. This might be the area where TDMA offers the best advantage. The FDMA system must be licensed for each individual channel; in contrast, the TDMA user simply leverages his already-licensed channel by dividing it into time slots. Also, because alternating 6.25 kHz channels exist on 12.5 kHz channel centers, adding a new adjacent 6.25 kHz channel creates energy outside the spectrum mask of the original 12.5 kHz channel. This situation can create adjacent-channel short-spacing problems, depending on the location of adjacent-channel repeaters and users.

Transmitter combiner costs. The transmitter combiner at the repeater site allows multiple radios to share the same antenna. FDMA systems must have one transmitter port for each user, while TDMA systems require one transmitter port for each radio channel. Consequently, an existing combiner with 12.5 kHz channels requires no modifications for a TDMA conversion, but it does require a 2:1 expansion for a 6.25 kHz FDMA system. Alternatively, the FDMA manufacturer might use hybrid combiners in the radio chassis to combine adjacent 6.25 kHz channels before they hit the cavity filter at the combiner.

However, a licensee may not want adjacent channels in his system because of the near-far problem among his own users.
Oscillator frequency drift. The subscriber radio employs a crystal oscillator that serves as the frequency reference for the receiver’s local oscillator. As the crystal ages, its frequency drifts. Periodic frequency alignments can correct for this drift, but a narrower channel filter is more sensitive to this problem. As a reference point, consider that most radio manufacturers use a fixed 16-kHz filter for both 25 kHz and NPSPAC channels, despite the fact that adjacent-channel performance at 12.5 kHz is relatively poor.

In other words, the practical tradeoff to date has favored the wider filter. So, for 6.25 kHz channels, the IF filter must be widened, which creates adjacent-channel and near-far problems, or the frequency specification must be tightened. This problem may be solvable through adaptive filtering or other means, but the solution likely will add cost and complexity to the radio. The licensee should ask the vendor how this problem is addressed in his design.

Peer-to-peer (talk-around) mode. TDMA systems typically operate through radio repeaters, but land mobile radio users often operate in peer-to-peer mode. Most TDMA solutions revert to a single FDMA channel in peer-to-peer mode. The P25 standards committee is considering a two-slot TDMA peer-to-peer mode, so talk-around communications may be available in such systems in the near future.

Licensees have different priorities, so the choice between FDMA and TDMA is not “one size fits all.” In the end, cost may be the deciding factor.

Jay Jacobsmeyer is president of Pericle Communications Co., a consulting engineering firm located in Colorado Springs, Colo. He holds bachelor's and master's degrees in electrical engineering from Virginia Tech and Cornell University, respectively, and has more than 25 years experience as a radio-frequency engineer.

Tags: DMR Association Narrowbanding NXDN Forum Article

Related


  • LMR licensing activity again dips to new all-time lows in 2020
    Land-mobile-radio (LMR) licensing activity in both the public-safety and business-industrial sectors dropped by more than 10% in 2020 to establish new all-time low marks, based on data available in the FCC’s online Universal Licensing System (ULS) database. During 2020, the FCC received 12,368 LMR license application—2,791 for public-safety networks and 9,577 for business-industrial systems—with more […]
  • Congress repeals T-Band auction as part of massive funding bill with COVID-19 relief
    Public-safety and business-industrial licensees with LMR systems on T-Band spectrum would be able to continue operating those networks, thanks to a scheduled auction of the airwaves being repealed as part of the massive federal funding legislation passed yesterday by Congress. This reported $1.4 trillion funding measure, along with a $900 billion COVID-19 relief package, has […]
  • Hytera, Motorola Solutions propose finishing injunction briefs next month
    Final written arguments from Motorola Solutions in support of a permanent injunction against Hytera Communications selling certain DMR products would be due on June 23, according to briefing schedule proposed by both parties in the companies’ lengthy federal-court case. Initiated in November 2019, the trade-secrets and software-copyright suit resulted in a unanimous jury verdict in […]
  • Senate COVID-19 relief package does not address T-Band repeal, 911 items
    U.S. senators unanimously approved a $2.2 trillion COVID-19 relief package late Wednesday, but the legislation does not include language that would repeal a mandate to auction T-Band spectrum or address 911-related issues that have been prioritized by public-safety officials, according to Beltway sources. Having public-safety-communications language included in the Senate bill was a goal for […]

Leave a comment Cancel reply

To leave a comment login with your Urgent Comms account:

Log in with your Urgent Comms account

Or alternatively provide your name, email address below:

Your email address will not be published. Required fields are marked *

Related Content

  • Public-safety LMR licensing activity sets new low during 2018
  • FCC maintains possibility of 6.25 kHz mandate with denial of waiver request
  • Icom America announces new series of NXDN IDAS mobiles and portables
  • Steve Devine: Lack of 700 MHz narrowbanding decision leaves agencies in limbo

Commentary


Unlocking the power of ESInets: Different NG911 provisioning approaches exist; level of control is key differentiator

7th April 2021

Ransomware? Let’s call it what it really is: extortionware

21st February 2021

Redefining communications for today’s mobile workforces

18th February 2021
view all

Events


UC Ezines


IWCE 2019 Wrap Up

13th May 2019
view all

Twitter


UrgentComm

RT @InformaTechHQ: Happy #WorldEarthDay! To mark the day our CEO Gary Nugent highlights the importance of technology and how it can be a dr…

22nd April 2021
UrgentComm

RT @Airgain: T-minus 14 days until our virtual panel with @UrgentComm. Listen to our panel of industry leaders as they share their firsthan…

22nd April 2021
UrgentComm

Driver and passenger monitoring brings zero cabin privacy dlvr.it/Ry9BSK

21st April 2021
UrgentComm

In this comprehensive report, @OmdiaHQ delivers a landscape and forecast for LTE and #5G technology serving the nee… twitter.com/i/web/status/1…

21st April 2021
UrgentComm

Attackers compromised code-checking vendor’s tool for two months dlvr.it/Ry7c0F

21st April 2021
UrgentComm

Will the feds set our broadband Internet prices? dlvr.it/Ry7bx0

21st April 2021
UrgentComm

Newscan: Chinese hackers compromise dozens of government agencies, defense contractors dlvr.it/Ry7MYD

21st April 2021
UrgentComm

Florida secures radio-system revenue for five years, agencies await clarity on statewide LMR dlvr.it/Ry4Wb8

20th April 2021

Newsletter

Sign up for UrgentComm’s newsletters to receive regular news and information updates about Communications and Technology.

Expert Commentary

Learn from experts about the latest technology in automation, machine-learning, big data and cybersecurity.

Business Media

Find the latest videos and media from the market leaders.

Media Kit and Advertising

Want to reach our digital and print audiences? Learn more here.

DISCOVER MORE FROM INFORMA TECH

  • American City & County
  • IWCE
  • Light Reading
  • IOT World Today
  • Mission Critical Technologies
  • Microwave/RF
  • T&D World
  • TU-Auto

WORKING WITH US

  • About Us
  • Contact Us
  • Events
  • Careers

FOLLOW Urgent Comms ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookies Policy
  • Terms
Copyright © 2021 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.
This website uses cookies, including third party ones, to allow for analysis of how people use our website in order to improve your experience and our services. By continuing to use our website, you agree to the use of such cookies. Click here for more information on our Cookie Policy and Privacy Policy.
X